Evolution of microRNAs located within Hox gene clusters.

MicroRNAs (miRNAs) form an abundant class of non-coding RNA genes that have an important function in post-transcriptional gene regulation and in particular modulate the expression of developmentally important transcription factors including Hox genes. Two families of microRNAs are genomically located in intergenic regions in the Hox clusters of vertebrates. Here we describe their evolution in detail. We show that the micro RNAs closely follow the patterns of protein evolution in the Hox clusters, which is characterized by cluster duplications followed by differential gene loss.

[1]  Sonja J. Prohaska,et al.  Divergence of conserved non-coding sequences: rate estimates and relative rate tests. , 2004, Molecular biology and evolution.

[2]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[3]  Sonja J. Prohaska,et al.  Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. , 2004, Molecular phylogenetics and evolution.

[4]  Peter F Stadler,et al.  Molecular evolution of a microRNA cluster. , 2004, Journal of molecular biology.

[5]  W. Bickmore,et al.  Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. , 2004, Genes & development.

[6]  Sonja J. Prohaska,et al.  Surveying phylogenetic footprints in large gene clusters: applications to Hox cluster duplications. , 2004, Molecular phylogenetics and evolution.

[7]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[8]  Lisa M. D'Souza,et al.  Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.

[9]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets. , 2004 .

[10]  Michael P Hunter,et al.  Comparative genomic analysis of vertebrate Hox3 and Hox4 genes. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[11]  Sonja J. Prohaska,et al.  Exclusion of repetitive DNA elements from gnathostome Hox clusters. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[12]  C. Amemiya,et al.  Genome resource for the Indonesian coelacanth, Latimeria menadoensis. , 2004, Journal of experimental zoology. Part A, Comparative experimental biology.

[13]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[14]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[15]  Angel Amores,et al.  Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. , 2003, Genome research.

[16]  Sonja J. Prohaska,et al.  Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. , 2003, Genome research.

[17]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[18]  P. Deininger,et al.  Evolution of B2 repeats: the muroid explosion , 2004, Genetica.

[19]  Yoshiaki Nagamura,et al.  The genome sequence of silkworm, Bombyx mori. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[20]  Sonja J. Prohaska,et al.  The Shark HoxN Cluster Is Homologous to the Human HoxD Cluster , 2004, Journal of Molecular Evolution.

[21]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[22]  Gary Ruvkun,et al.  Identification of many microRNAs that copurify with polyribosomes in mammalian neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[24]  Paul W Sternberg,et al.  The draft genome sequence of the nematode Caenorhabditis briggsae, a companion to C. elegans , 2003, Genome Biology.

[25]  Sonja J. Prohaska,et al.  Independent Hox-cluster duplications in lampreys. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[26]  Zissimos Mourelatos,et al.  The microRNA world: small is mighty. , 2003, Trends in biochemical sciences.

[27]  P. Sharp,et al.  Embryonic stem cell-specific MicroRNAs. , 2003, Developmental cell.

[28]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[29]  A. Pasquinelli,et al.  Expression of the 22 nucleotide let‐7 heterochronic RNA throughout the Metazoa: a role in life history evolution? , 2003, Evolution & development.

[30]  The Drosophila melanogaster genome sequencing and annotation projects: a status report. , 2003, Briefings in functional genomics & proteomics.

[31]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[32]  E. Moss,et al.  Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. , 2003, Developmental biology.

[33]  Axel Meyer,et al.  Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. , 2003, Genome research.

[34]  A. Spagnuolo,et al.  Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. , 2003, Gene.

[35]  T. Tuschl,et al.  New microRNAs from mouse and human. , 2003, RNA.

[36]  M. Blaxter,et al.  Hox Gene Loss during Dynamic Evolution of the Nematode Cluster , 2003, Current Biology.

[37]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[38]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[39]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[40]  Nobuyoshi Shimizu,et al.  Genomic analysis of Hox clusters in the sea lamprey Petromyzon marinus. , 2002, The Journal of experimental zoology.

[41]  Angel Amores,et al.  Hox cluster organization in the jawless vertebrate Petromyzon marinus. , 2002, The Journal of experimental zoology.

[42]  Susan J. Brown,et al.  Sequence of the Tribolium castaneum homeotic complex: the region corresponding to the Drosophila melanogaster antennapedia complex. , 2002, Genetics.

[43]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[44]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[45]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[46]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[47]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[48]  T. Kaufman,et al.  Characterization of the Hox cluster from the mosquito Anopheles gambiae (Diptera: culicidae) , 2000, Evolution & development.

[49]  C. Blass,et al.  Characterization of the Hox gene cluster in the malaria vector mosquito, Anopheles gambiae , 2000, Evolution & development.

[50]  W Miller,et al.  Hox cluster genomics in the horn shark, Heterodontus francisci. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Krumlauf,et al.  Mechanisms of Hox gene colinearity: transposition of the anterior Hoxb1 gene into the posterior HoxD complex. , 2000, Genes & development.

[52]  E. Stellwag,et al.  Genomic organization of the Hoxa4-Hoxa10 region from Morone saxatilis: implications for Hox gene evolution among vertebrates. , 1999, The Journal of experimental zoology.

[53]  E. Davidson,et al.  Organization of an echinoderm Hox gene cluster. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Dicorleto,et al.  Endothelial Cells Express a Novel, Tumor Necrosis Factor-α-regulated Variant of HOXA9 * , 1999, The Journal of Biological Chemistry.

[55]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[56]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[57]  C. Shin,et al.  Genomic structure and sequence analysis of human HOXA-9. , 1998, DNA and cell biology.

[58]  K. Yamamura,et al.  Analysis of the murine Hoxa-9 cDNA: an alternatively spliced transcript encodes a truncated protein lacking the homeodomain. , 1998, Gene.

[59]  D. A. Kramerov,et al.  Short Retroposons of the B2 Superfamily: Evolution and Application for the Study of Rodent Phylogeny , 1998, Journal of Molecular Evolution.

[60]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[61]  G. Wagner,et al.  Phylogenetic reconstruction of vertebrate Hox cluster duplications. , 1997, Molecular biology and evolution.

[62]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[63]  E. Lewis,et al.  Splits in fruitfly Hox gene complexes , 1996, Nature.

[64]  J. F. Beltrán,et al.  Endangered Spanish science , 1996, Nature.

[65]  P. Holland,et al.  Hox genes and chordate evolution. , 1996, Developmental biology.

[66]  D. Witte,et al.  Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. , 1995, Development.

[67]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[68]  Jordi Garcia-Fernàndez,et al.  Archetypal organization of the amphioxus Hox gene cluster , 1994, Nature.

[69]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[70]  F. Tajima,et al.  Simple methods for testing the molecular evolutionary clock hypothesis. , 1993, Genetics.

[71]  J. W. Pendleton,et al.  Expansion of the Hox gene family and the evolution of chordates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[72]  T R Bürglin,et al.  The Caenorhabditis elegans homeobox gene cluster. , 1993, Current opinion in genetics & development.

[73]  P. Gruss,et al.  The Antennapedia-type homeobox genes have evolved from three precursors separated early in metazoan evolution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[75]  C. Frégeau,et al.  Synthesis and processing of small B2 transcripts in mouse embryonal carcinoma cells , 1990, Molecular and cellular biology.

[76]  S. Cumberledge,et al.  Characterization of two RNAs transcribed from the cis-regulatory region of the abd-A domain within the Drosophila bithorax complex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Akam Hox and HOM: Homologous gene clusters in insects and vertebrates , 1989, Cell.

[78]  D. Duboule,et al.  The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. , 1989, The EMBO journal.

[79]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[80]  T. E. Schroeder,et al.  Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. , 1967, Developmental biology.