Langevin representation of Coulomb collisions for bi-Maxwellian plasmas

Langevin model corresponding to the Fokker-Planck equation for bi-Maxwellian particle distribution functions is developed. Rosenbluth potentials and their derivatives are derived in the form of triple hypergeometric functions. The Langevin model is tested in the case of relaxation of the proton temperature anisotropy and implemented into the hybrid expanding box model. First results of this code are presented and discussed.

[1]  A. Lazarus,et al.  Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. , 2008, Physical review letters.

[2]  P. Hellinger,et al.  On Coulomb collisions in bi-Maxwellian plasmas , 2009 .

[3]  M. Velli,et al.  Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations , 2006 .

[4]  M. Maksimović,et al.  Electron temperature anisotropy constraints in the solar wind , 2008 .

[5]  K. Nanbu,et al.  THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS IN PLASMAS , 1997 .

[6]  A. J. Meadows,et al.  Plasma physics and the problem of controlled thermonuclear reactions , 1959 .

[7]  P. Hellinger,et al.  Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations: FIRE HOSE , 2008 .

[8]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[9]  T. Takizuka,et al.  A binary collision model for plasma simulation with a particle code , 1977 .

[10]  Yanghong Huang,et al.  Understanding the accuracy of Nanbu's numerical Coulomb collision operator , 2009, J. Comput. Phys..

[11]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[12]  A. Matthews,et al.  Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .

[13]  M. O'Brien,et al.  Nonlinear analysis of Coulomb relaxation of anisotropic distributions , 1989 .

[14]  P. Hellinger,et al.  Magnetosheath compression: Role of characteristic compression time, alpha particle abundance, and alpha/proton relative velocity , 2005 .

[15]  Fred L. Hinton Simulating Coulomb collisions in a magnetized plasma , 2008 .

[16]  Petr Hellinger,et al.  Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU , 2007 .

[17]  Don S. Lemons,et al.  Small-angle Coulomb collision model for particle-in-cell simulations , 2009, J. Comput. Phys..

[18]  Edward C. Shoub Failure of the Fokker--Planck approximation to the Boltzmann integral for (1/r) potentials , 1987 .

[19]  Wallace M. Manheimer,et al.  Langevin Representation of Coulomb Collisions in PIC Simulations , 1997 .

[20]  W. R. Buckland,et al.  Multiple Hypergeometric Functions and Applications , 1977 .