Semi-empirical infrared spectra simulation of pyrene-like molecules insight for simple analysis of functionalization graphene quantum dots

[1]  B. Smith Infrared Spectroscopy of Polymers, IX: Pendant Ester Polymers and Polycarbonates , 2022, Spectroscopy.

[2]  Mengtao Sun,et al.  Physical Mechanism of Fluorescence and Chirality of Functionalized Graphene Quantum Dots , 2022, The Journal of Physical Chemistry C.

[3]  D. Kilin,et al.  Understanding of Light Absorption Properties of the N-Doped Graphene Oxide Quantum Dot with TD-DFT , 2021, The Journal of Physical Chemistry C.

[4]  C. Panatarani,et al.  Visualization the electrostatic potential energy map of graphene quantum dots , 2021, 2101.07591.

[5]  M. Sun,et al.  Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging , 2020 .

[6]  Shunwei Chen,et al.  Engineering the excited state of graphitic carbon nitride nanostructures by covalently bonding with graphene quantum dots , 2020, Theoretical Chemistry Accounts.

[7]  A. Watanabe,et al.  Recent Advances in Graphene-Based Humidity Sensors , 2019, Nanomaterials.

[8]  S. Lau,et al.  Graphene quantum dots from chemistry to applications , 2018, Materials Today Chemistry.

[9]  Jianbo Jia,et al.  Green Preparation of High Yield Fluorescent Graphene Quantum Dots from Coal-Tar-Pitch by Mild Oxidation , 2018, Nanomaterials.

[10]  Yanli Wang,et al.  Sulfonic-functionalized Graphene Quantum Dots as a Highly Efficient Fluorescent Probe for Fe(III) Ions Detection , 2018, SDRP Journal of Computational Chemistry & Molecular Modelling.

[11]  Z. Qian,et al.  Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing. , 2018, Chemical record.

[12]  Ki‐Hyun Kim,et al.  Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics , 2018, RSC advances.

[13]  Shaona Chen,et al.  Synthesis and applications of graphene quantum dots: a review , 2018 .

[14]  Xiaofeng Xu,et al.  Tuning the Photoluminescence of Graphene Quantum Dots by Photochemical Doping with Nitrogen , 2017, Materials.

[15]  X. Zheng,et al.  Sweet graphene quantum dots for imaging carbohydrate receptors in live cells , 2017 .

[16]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[17]  T. Niehaus,et al.  Graphene quantum dots with visible light absorption of the carbon core: insights from single-particle spectroscopy and first principles based theory , 2016 .

[18]  C. Legnani,et al.  Structural and vibrational study of graphene oxide via coronene based models: theoretical and experimental results , 2016 .

[19]  Mengtao Sun,et al.  Theoretical Investigations of Optical Origins of Fluorescent Graphene Quantum Dots , 2016, Scientific Reports.

[20]  D. Zhao,et al.  The dual roles of functional groups in the photoluminescence of graphene quantum dots. , 2016, Nanoscale.

[21]  A. Kupchishin,et al.  Computer simulation and study of the IR spectra of irradiated polymer materials , 2016 .

[22]  Chao Lu,et al.  Structure observation of graphene quantum dots by single-layered formation in layered confinement space , 2015, Chemical science.

[23]  Wei Huang,et al.  Controllable size-selective method to prepare graphene quantum dots from graphene oxide , 2015, Nanoscale Research Letters.

[24]  Zhigang Chen,et al.  Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence , 2015 .

[25]  Peng Chen,et al.  Revealing the tunable photoluminescence properties of graphene quantum dots , 2014 .

[26]  Q. Guo,et al.  Graphene quantum dots cut from graphene flakes: high electrocatalytic activity for oxygen reduction and low cytotoxicity , 2014 .

[27]  U. Maschke,et al.  AM1 and DFT: Conformational and vibrational spectra analysis of butyl methacrylate , 2013 .

[28]  Seokwoo Jeon,et al.  Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. , 2013, ACS nano.

[29]  Peter Hildebrandt,et al.  Theory of Infrared Absorption and Raman Spectroscopy , 2008 .

[30]  S. Sandford,et al.  Infrared Spectroscopy of Matrix Isolated Polycyclic Aromatic Hydrocarbons. 3. Fluoranthene and the Benzofluoranthenes , 1998 .

[31]  Y. Khait,et al.  Search for stationary points on multidimensional surfaces , 1997 .

[32]  K. Ohno,et al.  Theoretical synthesis of vibrational spectra of polycyclic aromatic hydrocarbons. Infrared spectra of coronene , 1995 .

[33]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[34]  M. B. Coolidge,et al.  Calculations of molecular vibrational frequencies using semiempirical methods , 1991 .

[35]  R. Chang,et al.  Infrared and Raman spectra of C60 and C70 solid films at room temperature , 1991 .

[36]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[37]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .

[38]  T. E. Timofeeva,et al.  Ab initio calculations of energy and IR spectra of edge functionalized graphene quantum dots , 2018 .

[39]  Arundithi Ananthanarayanan Graphene quantum dots for biological applications , 2016 .

[40]  Bo Yang Bottom-up synthesis of graphene nanoribbons and nanographene molecules with new types of periphery , 2015 .

[41]  Setianto,et al.  Optical properties of amorphous silicon quantum dots (a-Si QDs) with various dot size using extended Hückel theory , 2013 .

[42]  Z. Jiang,et al.  Infrared Spectroscopy , 2022 .

[43]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[44]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[45]  Yoshiki Ogawa,et al.  Tables of molecular vibrational frequencies , 1972 .

[46]  J. Bell,et al.  Experiment and Theory , 1968 .