NON-DETERMINISTIC SEMANTICS FOR LOGICAL SYSTEMS

The principle of truth-functionality (or compositionality) is a basic principle in many-valued logic in general, and in classical logic in particular. According to this principle, the truth-value of a complex formula is uniquely determined by the truth-values of its subformulas. However, real-world information is inescapably incomplete, uncertain, vague, imprecise or inconsistent, and these phenomena are in an obvious conflict with the principle of truth-functionality. One possible solution to this problem is to relax this principle by borrowing from automata and computability theory the idea of non-deterministic computations, and apply it in evaluations of truth-values of formulas. This leads to the introduction of non-deterministic matrices (Nmatrices) — a natural generalization of ordinary multi-valued matrices, in which the truth-value of a complex formula can be chosen nondeterministically out of some non-empty set of options. There are many natural motivations for introducing non-determinism into the truth-tables of logical connectives.

[1]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[2]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[3]  Barkley Rosser On the Many-Valued Logics , 1941 .

[4]  John McCarthy,et al.  A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .

[5]  Arthur N. Prior,et al.  The Runabout Inference-Ticket , 1960 .

[6]  Andrzej Mostowski,et al.  Axiomatizability of some many valued predicate calculi , 1961 .

[7]  Nuel D. Belnap,et al.  Tonk, Plonk and Plink , 1962 .

[8]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[9]  R. Montague,et al.  Logic : Techniques of Formal Reasoning , 1964 .

[10]  J. Shepherdson,et al.  Computer programming and formal systems , 1965 .

[11]  G. Rousseau Sequents in many valued logic I , 1967 .

[12]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[13]  N. Rescher Many Valued Logic , 1969 .

[14]  Franz Kutschera Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle , 1969 .

[15]  Moto-O. Takahashi Many-Valued Logics of Extended Gentzen Style II , 1970, J. Symb. Log..

[16]  Timothy Smiley,et al.  Deducibility and many-valuedness , 1971, Journal of Symbolic Logic.

[17]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[18]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[19]  J. Dunn,et al.  Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .

[20]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[21]  A Loparic SEMANTICAL STUDY OF SOME PROPOSITIONAL CALCULI , 1977 .

[22]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[23]  Jeffery I. Zucker,et al.  The adequacy problem for inferential logic , 1978, J. Philos. Log..

[24]  Jeffery I. Zucker,et al.  The adequacy problem for classical logic , 1978, J. Philos. Log..

[25]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[26]  W. Hodges Elementary Predicate Logic , 1983 .

[27]  David Nelson,et al.  Constructible falsity and inexact predicates , 1984, Journal of Symbolic Logic.

[28]  Matthias Baaz Kripke-type semantics for da Costa's paraconsistent logic Cω , 1986, Notre Dame J. Formal Log..

[29]  Alasdair Urquhart Many-valued Logic , 1986 .

[30]  G. Sundholm Proof Theory and Meaning , 1986 .

[31]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[32]  Walter Alexandre Carnielli,et al.  Systematization of finite many-valued logics through the method of tableaux , 1987, Journal of Symbolic Logic.

[33]  R. Wójcicki Theory of Logical Calculi: Basic Theory of Consequence Operations , 1988 .

[34]  Ryszard Wójcicki,et al.  Theory of Logical Calculi , 1988 .

[35]  Matthew L. Ginsberg,et al.  Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..

[36]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[37]  Hugues Leblanc,et al.  Alternatives to Standard First-Order Semantics , 1989 .

[38]  Arnon Avron,et al.  Simple Consequence Relations , 1988, Inf. Comput..

[39]  L. Bolc,et al.  Many-Valued Logics , 1992 .

[40]  Christian G. Fermüller,et al.  Dual systems of sequents and tableaux for many-valued logics , 1993, Bull. EATCS.

[41]  Reiner Hähnle,et al.  Automated deduction in multiple-valued logics , 1993, International series of monographs on computer science.

[42]  Grzegorz Malinowski,et al.  Many-Valued Logics , 1994 .

[43]  Melvin Fitting,et al.  Kleene's Three Valued Logics and Their Children , 1994, Fundam. Informaticae.

[44]  Christian G. Fermüller,et al.  Resolution-Based Theorem Proving for Manyvalued Logics , 1995, J. Symb. Comput..

[45]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[46]  Arnon Avron,et al.  Reasoning with logical bilattices , 1996, J. Log. Lang. Inf..

[47]  Gernot Salzer,et al.  Optimal Axiomatizations for Multiple-Valued Operators and Quantifiers Based on Semi-lattices , 1996, CADE.

[48]  Luca Cardelli Type systems , 1996, CSUR.

[49]  Reiner Hähnle,et al.  Commodious Axiomatization of Quantifiers in Multiple-Valued Logic , 1996, Stud Logica.

[50]  Christian G. Fermüller,et al.  Labeled Calculi and Finite-Valued Logics , 1998, Stud Logica.

[51]  Jean-Yves Béziau Classical Negation can be Expressed by One of its Halves , 1999, Log. J. IGPL.

[52]  Walter Alexandre Carnielli,et al.  Limits for Paraconsistent Calculi , 1999, Notre Dame J. Formal Log..

[53]  Reiner Hähnle,et al.  Tableaux for Many-Valued Logics , 1999 .

[54]  Diderik Batens,et al.  Embedding and Interpolation for some Paralogics. The Propositional Case , 1999, Reports Math. Log..

[55]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[56]  Jean Goubault-Larrecq,et al.  Normal Form Transformations , 2001, Handbook of Automated Reasoning.

[57]  Alasdair Urquhart,et al.  Basic Many-Valued Logic , 2001 .

[58]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[59]  Reiner Hähnle,et al.  Advanced Many-Valued Logics , 2001 .

[60]  Christian G. Fermüller,et al.  Automated Deduction for Many-Valued Logics , 2001, Handbook of Automated Reasoning.

[61]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[62]  W. Carnielli,et al.  A Taxonomy of C-systems , 2001 .

[63]  Beata Konikowska,et al.  Rasiowa-Sikorski deduction systems in computer science applications , 2002, Theor. Comput. Sci..

[64]  Itala M. Loffredo D'Ottaviano,et al.  Paraconsistency: The Logical Way to the Inconsistent , 2002 .

[65]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[66]  Arnon Avron,et al.  Proof Systems for Logics Based on Non-deterministic Multiple-valued Structures , 2004 .

[67]  Arnon Avron Gentzen-type systems, resolution and tableaux , 2004, Journal of Automated Reasoning.

[68]  J. Martin Marcos,et al.  Formal inconsistency and evolutionary databases , 2004 .

[69]  Artur S. d'Avila Garcez,et al.  We Will Show Them! Essays in Honour of Dov Gabbay, Volume One , 2005, We Will Show Them!.

[70]  Anna Zamansky,et al.  Quantification in non-deterministic multi-valued structures , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).

[71]  Arnon Avron,et al.  Multi-valued Calculi for Logics Based on Non-determinism , 2005, Log. J. IGPL.

[72]  Arnon Avron,et al.  Non-deterministic Matrices and Modular Semantics of Rules , 2005 .

[73]  Arnon Avron,et al.  Non-deterministic Multiple-valued Structures , 2005, J. Log. Comput..

[74]  Arnon Avron,et al.  A Non-deterministic View on Non-classical Negations , 2005, Stud Logica.

[75]  Arnon Avron Logical Non-determinism as a Tool for Logical Modularity: An Introduction , 2005, We Will Show Them!.

[76]  Kazushige Terui,et al.  Modular Cut-Elimination: Finding Proofs or Counterexamples , 2006, LPAR.

[77]  Kazushige Terui,et al.  Towards a Semantic Characterization of Cut-Elimination , 2006, Stud Logica.

[78]  Anna Zamansky,et al.  Canonical Gentzen-Type Calculi with (n, k)-ary Quantifiers , 2006, IJCAR.

[79]  Anna Zamansky,et al.  Non-Deterministic Semantics for First-Order Paraconsistent Logics , 2006, KR.

[80]  Anna Zamansky,et al.  Cut-Elimination and Quantification in Canonical Systems , 2006, Stud Logica.

[81]  Anna Zamansky,et al.  Many-Valued Non-deterministic Semantics for First-Order Logics of Formal (In)consistency , 2006, Algebraic and Proof-theoretic Aspects of Non-classical Logics.

[82]  W. Carnielli,et al.  Logics of Formal Inconsistency , 2007 .

[83]  Arnon Avron,et al.  Cut-Free Ordinary Sequent Calculi for Logics Having Generalized Finite-Valued Semantics , 2007, Logica Universalis.

[84]  Anna Zamansky,et al.  Effective Non-deterministic Semantics for First-order LFIs , 2007, J. Multiple Valued Log. Soft Comput..

[85]  Arnon Avron Non-deterministic semantics for logics with a consistency operator , 2007, Int. J. Approx. Reason..

[86]  Anna Zamansky,et al.  Non-deterministic Multi-valued Matrices for First-Order Logics of Formal Inconsistency , 2007, 37th International Symposium on Multiple-Valued Logic (ISMVL'07).

[87]  Anna Zamansky,et al.  Generalized Non-deterministic Matrices and (n, k)-ary Quantifiers , 2007, LFCS.

[88]  Anna Zamansky,et al.  Canonical Calculi with (n, k)-ary Quantifiers , 2008, Log. Methods Comput. Sci..

[89]  Anna Zamansky,et al.  Canonical Signed Calculi, Non-deterministic Matrices and Cut-Elimination , 2009, LFCS.

[90]  Anna Zamansky,et al.  Canonical signed calculi with multi-ary quantifiers , 2012, Ann. Pure Appl. Log..