NON-DETERMINISTIC SEMANTICS FOR LOGICAL SYSTEMS
暂无分享,去创建一个
[1] Stephen Cole Kleene,et al. On notation for ordinal numbers , 1938, Journal of Symbolic Logic.
[2] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[3] Barkley Rosser. On the Many-Valued Logics , 1941 .
[4] John McCarthy,et al. A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .
[5] Arthur N. Prior,et al. The Runabout Inference-Ticket , 1960 .
[6] Andrzej Mostowski,et al. Axiomatizability of some many valued predicate calculi , 1961 .
[7] Nuel D. Belnap,et al. Tonk, Plonk and Plink , 1962 .
[8] R. Sikorski,et al. The mathematics of metamathematics , 1963 .
[9] R. Montague,et al. Logic : Techniques of Formal Reasoning , 1964 .
[10] J. Shepherdson,et al. Computer programming and formal systems , 1965 .
[11] G. Rousseau. Sequents in many valued logic I , 1967 .
[12] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[13] N. Rescher. Many Valued Logic , 1969 .
[14] Franz Kutschera. Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle , 1969 .
[15] Moto-O. Takahashi. Many-Valued Logics of Extended Gentzen Style II , 1970, J. Symb. Log..
[16] Timothy Smiley,et al. Deducibility and many-valuedness , 1971, Journal of Symbolic Logic.
[17] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[18] Newton C. A. da Costa,et al. On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..
[19] J. Dunn,et al. Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .
[20] Nuel D. Belnap,et al. A Useful Four-Valued Logic , 1977 .
[21] A Loparic. SEMANTICAL STUDY OF SOME PROPOSITIONAL CALCULI , 1977 .
[22] J. M. Dunn,et al. Modern Uses of Multiple-Valued Logic , 1977 .
[23] Jeffery I. Zucker,et al. The adequacy problem for inferential logic , 1978, J. Philos. Log..
[24] Jeffery I. Zucker,et al. The adequacy problem for classical logic , 1978, J. Philos. Log..
[25] Dirk van Dalen,et al. Logic and structure , 1980 .
[26] W. Hodges. Elementary Predicate Logic , 1983 .
[27] David Nelson,et al. Constructible falsity and inexact predicates , 1984, Journal of Symbolic Logic.
[28] Matthias Baaz. Kripke-type semantics for da Costa's paraconsistent logic Cω , 1986, Notre Dame J. Formal Log..
[29] Alasdair Urquhart. Many-valued Logic , 1986 .
[30] G. Sundholm. Proof Theory and Meaning , 1986 .
[31] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[32] Walter Alexandre Carnielli,et al. Systematization of finite many-valued logics through the method of tableaux , 1987, Journal of Symbolic Logic.
[33] R. Wójcicki. Theory of Logical Calculi: Basic Theory of Consequence Operations , 1988 .
[34] Ryszard Wójcicki,et al. Theory of Logical Calculi , 1988 .
[35] Matthew L. Ginsberg,et al. Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..
[36] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[37] Hugues Leblanc,et al. Alternatives to Standard First-Order Semantics , 1989 .
[38] Arnon Avron,et al. Simple Consequence Relations , 1988, Inf. Comput..
[39] L. Bolc,et al. Many-Valued Logics , 1992 .
[40] Christian G. Fermüller,et al. Dual systems of sequents and tableaux for many-valued logics , 1993, Bull. EATCS.
[41] Reiner Hähnle,et al. Automated deduction in multiple-valued logics , 1993, International series of monographs on computer science.
[42] Grzegorz Malinowski,et al. Many-Valued Logics , 1994 .
[43] Melvin Fitting,et al. Kleene's Three Valued Logics and Their Children , 1994, Fundam. Informaticae.
[44] Christian G. Fermüller,et al. Resolution-Based Theorem Proving for Manyvalued Logics , 1995, J. Symb. Comput..
[45] Helmut Schwichtenberg,et al. Basic proof theory , 1996, Cambridge tracts in theoretical computer science.
[46] Arnon Avron,et al. Reasoning with logical bilattices , 1996, J. Log. Lang. Inf..
[47] Gernot Salzer,et al. Optimal Axiomatizations for Multiple-Valued Operators and Quantifiers Based on Semi-lattices , 1996, CADE.
[48] Luca Cardelli. Type systems , 1996, CSUR.
[49] Reiner Hähnle,et al. Commodious Axiomatization of Quantifiers in Multiple-Valued Logic , 1996, Stud Logica.
[50] Christian G. Fermüller,et al. Labeled Calculi and Finite-Valued Logics , 1998, Stud Logica.
[51] Jean-Yves Béziau. Classical Negation can be Expressed by One of its Halves , 1999, Log. J. IGPL.
[52] Walter Alexandre Carnielli,et al. Limits for Paraconsistent Calculi , 1999, Notre Dame J. Formal Log..
[53] Reiner Hähnle,et al. Tableaux for Many-Valued Logics , 1999 .
[54] Diderik Batens,et al. Embedding and Interpolation for some Paralogics. The Propositional Case , 1999, Reports Math. Log..
[55] D. Gabbay,et al. Handbook of tableau methods , 1999 .
[56] Jean Goubault-Larrecq,et al. Normal Form Transformations , 2001, Handbook of Automated Reasoning.
[57] Alasdair Urquhart,et al. Basic Many-Valued Logic , 2001 .
[58] Arnon Avron,et al. Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.
[59] Reiner Hähnle,et al. Advanced Many-Valued Logics , 2001 .
[60] Christian G. Fermüller,et al. Automated Deduction for Many-Valued Logics , 2001, Handbook of Automated Reasoning.
[61] S. Gottwald. A Treatise on Many-Valued Logics , 2001 .
[62] W. Carnielli,et al. A Taxonomy of C-systems , 2001 .
[63] Beata Konikowska,et al. Rasiowa-Sikorski deduction systems in computer science applications , 2002, Theor. Comput. Sci..
[64] Itala M. Loffredo D'Ottaviano,et al. Paraconsistency: The Logical Way to the Inconsistent , 2002 .
[65] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[66] Arnon Avron,et al. Proof Systems for Logics Based on Non-deterministic Multiple-valued Structures , 2004 .
[67] Arnon Avron. Gentzen-type systems, resolution and tableaux , 2004, Journal of Automated Reasoning.
[68] J. Martin Marcos,et al. Formal inconsistency and evolutionary databases , 2004 .
[69] Artur S. d'Avila Garcez,et al. We Will Show Them! Essays in Honour of Dov Gabbay, Volume One , 2005, We Will Show Them!.
[70] Anna Zamansky,et al. Quantification in non-deterministic multi-valued structures , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).
[71] Arnon Avron,et al. Multi-valued Calculi for Logics Based on Non-determinism , 2005, Log. J. IGPL.
[72] Arnon Avron,et al. Non-deterministic Matrices and Modular Semantics of Rules , 2005 .
[73] Arnon Avron,et al. Non-deterministic Multiple-valued Structures , 2005, J. Log. Comput..
[74] Arnon Avron,et al. A Non-deterministic View on Non-classical Negations , 2005, Stud Logica.
[75] Arnon Avron. Logical Non-determinism as a Tool for Logical Modularity: An Introduction , 2005, We Will Show Them!.
[76] Kazushige Terui,et al. Modular Cut-Elimination: Finding Proofs or Counterexamples , 2006, LPAR.
[77] Kazushige Terui,et al. Towards a Semantic Characterization of Cut-Elimination , 2006, Stud Logica.
[78] Anna Zamansky,et al. Canonical Gentzen-Type Calculi with (n, k)-ary Quantifiers , 2006, IJCAR.
[79] Anna Zamansky,et al. Non-Deterministic Semantics for First-Order Paraconsistent Logics , 2006, KR.
[80] Anna Zamansky,et al. Cut-Elimination and Quantification in Canonical Systems , 2006, Stud Logica.
[81] Anna Zamansky,et al. Many-Valued Non-deterministic Semantics for First-Order Logics of Formal (In)consistency , 2006, Algebraic and Proof-theoretic Aspects of Non-classical Logics.
[82] W. Carnielli,et al. Logics of Formal Inconsistency , 2007 .
[83] Arnon Avron,et al. Cut-Free Ordinary Sequent Calculi for Logics Having Generalized Finite-Valued Semantics , 2007, Logica Universalis.
[84] Anna Zamansky,et al. Effective Non-deterministic Semantics for First-order LFIs , 2007, J. Multiple Valued Log. Soft Comput..
[85] Arnon Avron. Non-deterministic semantics for logics with a consistency operator , 2007, Int. J. Approx. Reason..
[86] Anna Zamansky,et al. Non-deterministic Multi-valued Matrices for First-Order Logics of Formal Inconsistency , 2007, 37th International Symposium on Multiple-Valued Logic (ISMVL'07).
[87] Anna Zamansky,et al. Generalized Non-deterministic Matrices and (n, k)-ary Quantifiers , 2007, LFCS.
[88] Anna Zamansky,et al. Canonical Calculi with (n, k)-ary Quantifiers , 2008, Log. Methods Comput. Sci..
[89] Anna Zamansky,et al. Canonical Signed Calculi, Non-deterministic Matrices and Cut-Elimination , 2009, LFCS.
[90] Anna Zamansky,et al. Canonical signed calculi with multi-ary quantifiers , 2012, Ann. Pure Appl. Log..