One-Dimensional van der Waals Heterojunction Diode.

The synthesis of one-dimensional van der Waals heterostructures was realized recently, which offers alternative possibilities for prospective applications in electronics and optoelectronics. The even reduced dimension will enable different properties and further miniaturization beyond the capabilities of their two-dimensional counterparts. The natural doping results in p-type electrical characteristics for semiconducting single-walled carbon nanotubes and n-type for molybdenum disulfide with conventional noble metal contacts. Therefore, we demonstrate here a one-dimensional heterostructure nanotube, 11 nm wide, with the coaxial assembly of a semiconducting single-walled carbon nanotube, insulating boron nitride nanotube, and semiconducting molybdenum disulfide nanotube, which induces a radial semiconductor-insulator-semiconductor heterojunction. When opposite potential polarity was applied on a semiconducting single-walled carbon nanotube and molybdenum disulfide nanotube, respectively, the rectifying effect was materialized.

[1]  R. Xiang,et al.  Non-catalytic heteroepitaxial growth of aligned, large-sized hexagonal boron nitride single-crystals on graphite. , 2020, Nanoscale.

[2]  E. Kauppinen,et al.  Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. , 2020, ACS nano.

[3]  Xiaoqin Li,et al.  Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. , 2018, Nano letters.

[4]  J. Kong,et al.  One-dimensional van der Waals heterostructures , 2018, Science.

[5]  R. Xiang,et al.  Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes , 2018 .

[6]  M. Gather,et al.  Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. , 2017, Nature materials.

[7]  Damien Thompson,et al.  Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. , 2017, Nature nanotechnology.

[8]  R. Hueting,et al.  Electrostatic Doping in Semiconductor Devices , 2017, IEEE Transactions on Electron Devices.

[9]  Young Hee Lee,et al.  Selective control of electron and hole tunneling in 2D assembly , 2017, Science Advances.

[10]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[11]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[12]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[13]  W. Pernice,et al.  Cavity-enhanced light emission from electrically driven carbon nanotubes , 2016, Nature Photonics.

[14]  M. S. Jeong,et al.  Semiconductor-Insulator-Semiconductor Diode Consisting of Monolayer MoS2, h-BN, and GaN Heterostructure. , 2015, ACS nano.

[15]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[16]  J. Neaton,et al.  Single-molecule diodes with high rectification ratios through environmental control. , 2015, Nature nanotechnology.

[17]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[18]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[19]  A. Seabaugh,et al.  Synthesized multiwall MoS2 nanotube and nanoribbon field-effect transistors , 2014, 1411.6000.

[20]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[21]  Xiaoji G. Xu,et al.  One-dimensional surface phonon polaritons in boron nitride nanotubes , 2014, Nature Communications.

[22]  H. Kataura,et al.  Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films , 2014 .

[23]  Wilfried Haensch,et al.  Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors , 2014, 72nd Device Research Conference.

[24]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[25]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[26]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[27]  Min Sup Choi,et al.  Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors , 2014, Scientific Reports.

[28]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[29]  W. Haensch,et al.  Carbon nanotube complementary wrap-gate transistors. , 2013, Nano letters.

[30]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[31]  Lianmao Peng,et al.  A doping-free approach to carbon nanotube electronics and optoelectronics , 2012 .

[32]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[33]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[34]  J. Rogers,et al.  Theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes , 2010, 1005.0870.

[35]  P. Avouris,et al.  Efficient narrow-band light emission from a single carbon nanotube p-n diode. , 2010, Nature nanotechnology.

[36]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[37]  W. Yu,et al.  Restorable Type Conversion of Carbon Nanotube Transistor Using Pyrolytically Controlled Antioxidizing Photosynthesis Coenzyme , 2009 .

[38]  F. Ducastelle,et al.  Optical properties of multiwall boron nitride nanotubes , 2007 .

[39]  Y. Hanein,et al.  A complete scheme for creating predefined networks of individual carbon nanotubes. , 2007, Nano letters.

[40]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[41]  F. Léonard,et al.  Properties of short channel ballistic carbon nanotube transistors with ohmic contacts , 2006, Nanotechnology.

[42]  William I. Milne,et al.  Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts , 2005 .

[43]  J. U. Lee,et al.  Carbon nanotube p-n junction diodes , 2004 .

[44]  A. Zettl,et al.  Field emission and current-voltage properties of boron nitride nanotubes , 2004 .

[45]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[46]  M. Shiraishi,et al.  Work function of carbon nanotubes , 2001 .

[47]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[48]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[49]  Wolfram Jaegermann,et al.  Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .

[50]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.