One-Dimensional van der Waals Heterojunction Diode.
暂无分享,去创建一个
S. Rotkin | R. Xiang | S. Maruyama | Taiki Inoue | S. Chiashi | Ya Feng | Henan Li
[1] R. Xiang,et al. Non-catalytic heteroepitaxial growth of aligned, large-sized hexagonal boron nitride single-crystals on graphite. , 2020, Nanoscale.
[2] E. Kauppinen,et al. Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. , 2020, ACS nano.
[3] Xiaoqin Li,et al. Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. , 2018, Nano letters.
[4] J. Kong,et al. One-dimensional van der Waals heterostructures , 2018, Science.
[5] R. Xiang,et al. Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes , 2018 .
[6] M. Gather,et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. , 2017, Nature materials.
[7] Damien Thompson,et al. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. , 2017, Nature nanotechnology.
[8] R. Hueting,et al. Electrostatic Doping in Semiconductor Devices , 2017, IEEE Transactions on Electron Devices.
[9] Young Hee Lee,et al. Selective control of electron and hole tunneling in 2D assembly , 2017, Science Advances.
[10] Faisal Ahmed,et al. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.
[11] Lianmao Peng,et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.
[12] X. Duan,et al. Van der Waals heterostructures and devices , 2016 .
[13] W. Pernice,et al. Cavity-enhanced light emission from electrically driven carbon nanotubes , 2016, Nature Photonics.
[14] M. S. Jeong,et al. Semiconductor-Insulator-Semiconductor Diode Consisting of Monolayer MoS2, h-BN, and GaN Heterostructure. , 2015, ACS nano.
[15] P. Ajayan,et al. A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.
[16] J. Neaton,et al. Single-molecule diodes with high rectification ratios through environmental control. , 2015, Nature nanotechnology.
[17] Moon J. Kim,et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.
[18] A Gholinia,et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.
[19] A. Seabaugh,et al. Synthesized multiwall MoS2 nanotube and nanoribbon field-effect transistors , 2014, 1411.6000.
[20] G. Vignale,et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.
[21] Xiaoji G. Xu,et al. One-dimensional surface phonon polaritons in boron nitride nanotubes , 2014, Nature Communications.
[22] H. Kataura,et al. Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films , 2014 .
[23] Wilfried Haensch,et al. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors , 2014, 72nd Device Research Conference.
[24] A. M. van der Zande,et al. Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.
[25] A. H. Castro Neto,et al. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.
[26] R. Gorbachev. Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.
[27] Min Sup Choi,et al. Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors , 2014, Scientific Reports.
[28] K. L. Shepard,et al. One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.
[29] W. Haensch,et al. Carbon nanotube complementary wrap-gate transistors. , 2013, Nano letters.
[30] Young-Jun Yu,et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.
[31] Lianmao Peng,et al. A doping-free approach to carbon nanotube electronics and optoelectronics , 2012 .
[32] Mark S. Lundstrom,et al. Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.
[33] A. Radenović,et al. Single-layer MoS2 transistors. , 2011, Nature nanotechnology.
[34] J. Rogers,et al. Theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes , 2010, 1005.0870.
[35] P. Avouris,et al. Efficient narrow-band light emission from a single carbon nanotube p-n diode. , 2010, Nature nanotechnology.
[36] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[37] W. Yu,et al. Restorable Type Conversion of Carbon Nanotube Transistor Using Pyrolytically Controlled Antioxidizing Photosynthesis Coenzyme , 2009 .
[38] F. Ducastelle,et al. Optical properties of multiwall boron nitride nanotubes , 2007 .
[39] Y. Hanein,et al. A complete scheme for creating predefined networks of individual carbon nanotubes. , 2007, Nano letters.
[40] S. Sze,et al. Physics of Semiconductor Devices: Sze/Physics , 2006 .
[41] F. Léonard,et al. Properties of short channel ballistic carbon nanotube transistors with ohmic contacts , 2006, Nanotechnology.
[42] William I. Milne,et al. Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts , 2005 .
[43] J. U. Lee,et al. Carbon nanotube p-n junction diodes , 2004 .
[44] A. Zettl,et al. Field emission and current-voltage properties of boron nitride nanotubes , 2004 .
[45] M. Lundstrom,et al. Ballistic carbon nanotube field-effect transistors , 2003, Nature.
[46] M. Shiraishi,et al. Work function of carbon nanotubes , 2001 .
[47] H. Dai,et al. Modulated chemical doping of individual carbon nanotubes. , 2000, Science.
[48] M. Dresselhaus,et al. Phonons in carbon nanotubes , 2000 .
[49] Wolfram Jaegermann,et al. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .
[50] A. Rinzler,et al. Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.