Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques
暂无分享,去创建一个
Yalchin Efendiev | Xianlin Ma | Akhil Datta-Gupta | Bani K. Mallick | A. Datta-Gupta | Y. Efendiev | B. Mallick | X. Ma
[1] L. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .
[2] P. Kitanidis. Quasi‐Linear Geostatistical Theory for Inversing , 1995 .
[3] Louis J. Durlofsky,et al. An Ensemble Level Upscaling Approach for Efficient Estimation of Fine-Scale Production Statistics Using Coarse-Scale Simulations , 2007 .
[4] Yalchin Efendiev,et al. An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration , 2005 .
[5] P. Dostert,et al. Uncertainty quantification using multiscale methods for porous media flows , 2007 .
[6] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[7] T. Hou,et al. Analysis of upscaling absolute permeability , 2002 .
[8] Yalchin Efendiev,et al. An Efficient Two-Stage Sampling Method for Uncertainty Quantification in History Matching Geological Models , 2008 .
[9] Clayton V. Deutsch,et al. GSLIB: Geostatistical Software Library and User's Guide , 1993 .
[10] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[11] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[12] Yalchin Efendiev,et al. Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..
[13] Dave Higdon,et al. A Bayesian approach to characterizing uncertainty in inverse problems using coarse and fine-scale information , 2002, IEEE Trans. Signal Process..
[14] Louis J. Durlofsky,et al. Assessment of Uncertainty in Reservoir Production Forecasts Using Upscaled Flow Models , 2005 .
[15] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[16] A. Gelman,et al. Some Issues in Monitoring Convergence of Iterative Simulations , 1998 .
[17] Michael Andrew Christie,et al. Error analysis and simulations of complex phenomena , 2005 .
[18] Alannah Eileen O'Sullivan,et al. Modelling simulation error for improved reservoir prediction , 2004 .
[19] Dean S. Oliver,et al. Conditioning Permeability Fields to Pressure Data , 1996 .
[20] Harold J. Kushner,et al. Stochastic processes in information and dynamical systems , 1972 .
[21] K. Aziz,et al. Petroleum Reservoir Simulation , 1979 .
[22] Michel Loève,et al. Probability Theory I , 1977 .
[23] C. Fox,et al. Markov chain Monte Carlo Using an Approximation , 2005 .
[24] D. Oliver,et al. Markov chain Monte Carlo methods for conditioning a permeability field to pressure data , 1997 .
[25] Victor Ginting,et al. Analysis of two-scale finite volume element method for elliptic problem , 2004, J. Num. Math..
[26] David H. Sharp,et al. Prediction and the quantification of uncertainty , 1999 .
[27] Yalchin Efendiev,et al. Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..
[28] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[29] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[30] Henning Omre,et al. Improved Production Forecasts and History Matching Using Approximate Fluid-Flow Simulators , 2004 .