A parasitic fungus employs mutated eIF4A to survive on rocaglate-synthesizing Aglaia plants

Plants often generate secondary metabolites as defense mechanisms against parasites. Although some fungi may potentially overcome the barrier of antimicrobial compounds, only a limited number of examples and molecular mechanisms of resistance have been reported. Here, we found an Aglaia plant-parasitizing fungus that overcomes the toxicity of rocalgates, which are translation inhibitors synthesized by the plant, through an amino acid substitution in a translation initiation factor (eIF). De novo transcriptome assembly revealed that the fungus belongs to Ophiocordyceps genus and its eIF4A, a molecular target of rocaglates, contains a amino acid substitution critical for rocaglate binding. Ribosome profiling harnessing a cucumber-infecting fungus, Colletotrichum orbiculare, demonstrated that the translational inhibitory effects of rocaglates were largely attenuated by the mutation found in the Aglaia parasite. The engineered Colletotrichum orbiculare showed a survival advantage on cucumber plants with rocaglates. Our study exemplifies a plant-fungus tug-of-war centered on secondary metabolites produced by host plants.

[1]  A. Kirschning,et al.  Identification of structurally re-engineered rocaglates as inhibitors against hepatitis E virus replication. , 2022, Antiviral research.

[2]  G. Packham,et al.  Targeted inhibition of eIF4A suppresses B-cell receptor-induced translation and expression of MYC and MCL1 in chronic lymphocytic leukemia cells , 2021, Cellular and Molecular Life Sciences.

[3]  T. Imamura,et al.  Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana , 2021, bioRxiv.

[4]  Lauren E. Heese,et al.  Inhibition of translation initiation factor eIF4a inactivates heat shock factor 1 (HSF1) and exerts anti-leukemia activity in AML , 2021, Leukemia.

[5]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[6]  R. Cencic,et al.  Eukaryotic Translation Initiation Factor 4AI: A Potential Novel Target in Neuroblastoma , 2021, Cells.

[7]  R. Cencic,et al.  Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. , 2021, Cell chemical biology.

[8]  Nicholas T. Ingolia,et al.  Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A. , 2020, Cell chemical biology.

[9]  Christin Müller,et al.  The rocaglate CR-31-B (−) inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo , 2020, bioRxiv.

[10]  Yuichiro Mishima,et al.  Protocol for Disome Profiling to Survey Ribosome Collision in Humans and Zebrafish , 2020, STAR protocols.

[11]  P. A. Thompson,et al.  Targeting Oncogene mRNA Translation in B-Cell Malignancies with eFT226, a Potent and Selective Inhibitor of eIF4A , 2020, Molecular Cancer Therapeutics.

[12]  Meng Li,et al.  The entomophagous caterpillar fungus Ophiocordyceps sinensis is consumed by its lepidopteran host as a plant endophyte , 2020, Fungal ecology.

[13]  P. A. Thompson,et al.  Design of Development Candidate eFT226, a First in Class Inhibitor of Eukaryotic Initiation Factor 4A RNA Helicase. , 2020, Journal of medicinal chemistry.

[14]  L. Cowen,et al.  Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris , 2020, mBio.

[15]  Patrick B. F. O'Connor,et al.  Rocaglates Induce Gain-of-Function Alterations to eIF4A and eIF4F , 2020, Cell reports.

[16]  Christin Müller,et al.  Comparison of broad-spectrum antiviral activities of the synthetic rocaglate CR-31-B (−) and the eIF4A-inhibitor Silvestrol , 2020, Antiviral Research.

[17]  C. de Bekker,et al.  Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics , 2020, bioRxiv.

[18]  J. Pelletier,et al.  eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma , 2019, Nature Communications.

[19]  D. Hughes,et al.  Zombie-Ant Fungi Emerged from Non-manipulating, Beetle-Infecting Ancestors , 2019, Current Biology.

[20]  S. Vajda,et al.  Amidino-Rocaglates: A Potent Class of eIF4A Inhibitors. , 2019, Cell chemical biology.

[21]  Y. Narusaka,et al.  Genome sequence resources for four phytopathogenic fungi from the Colletotrichum orbiculare species complex. , 2019, Molecular plant-microbe interactions : MPMI.

[22]  Geo Pertea,et al.  Transcriptome assembly from long-read RNA-seq alignments with StringTie2 , 2019, Genome Biology.

[23]  M. Lebrun,et al.  Nonproteinaceous effectors: the terra incognita of plant-fungal interactions. , 2019, The New phytologist.

[24]  Y. Harada,et al.  HCV IRES Captures an Actively Translating 80S Ribosome. , 2019, Molecular cell.

[25]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2019, Bioinform..

[26]  Patricia P. Chan,et al.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.

[27]  Alexey M. Kozlov,et al.  ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models , 2019, bioRxiv.

[28]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[29]  R. Green,et al.  High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress. , 2019, Molecular cell.

[30]  Shintaro Iwasaki,et al.  The Translation Inhibitor Rocaglamide Targets a Bimolecular Cavity between eIF4A and Polypurine RNA. , 2019, Molecular cell.

[31]  K. Shirasu,et al.  Establishment of a selection marker recycling system for sequential transformation of the plant‐pathogenic fungus Colletotrichum orbiculare , 2018, Molecular plant pathology.

[32]  Jeffrey A. Hussmann,et al.  Ribosome Profiling: Global Views of Translation. , 2018, Cold Spring Harbor perspectives in biology.

[33]  N. Sonenberg,et al.  Dynamic interaction of poly(A)-binding protein with the ribosome , 2018, Scientific Reports.

[34]  N. Talbot,et al.  CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus , 2018, bioRxiv.

[35]  J. Hao,et al.  Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress , 2018, PloS one.

[36]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[37]  J. Spatafora,et al.  Harnessing the power of phylogenomics to disentangle the directionality and signatures of interkingdom host jumping in the parasitic fungal genus Tolypocladium , 2018, Mycologia.

[38]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[39]  P. A. Thompson,et al.  Preclinical Evaluation of eFT226, a Novel, Potent and Selective eIF4A Inhibitor with Anti-Tumor Activity in B-Cell Malignancies , 2017 .

[40]  K. Hyde,et al.  Introducing Ophiocordyceps thanathonensis, a new species of entomogenous fungi on ants, and a reference specimen for O. pseudolloydii. , 2017 .

[41]  D. Hughes,et al.  Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins , 2017, Scientific Reports.

[42]  Nicholas T Ingolia,et al.  Transcriptome-wide measurement of translation by ribosome profiling. , 2017, Methods.

[43]  Nicholas T. Ingolia,et al.  The Growing Toolbox for Protein Synthesis Studies. , 2017, Trends in biochemical sciences.

[44]  J. Bradner,et al.  Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma , 2017, Science Translational Medicine.

[45]  Nicholas T. Ingolia,et al.  Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor , 2016, Nature.

[46]  Y. Saijo,et al.  Plant Inoculation with the Fungal Leaf Pathogen Colletotrichum higginsianum. , 2016, Methods in molecular biology.

[47]  K. Shirasu,et al.  Markers to differentiate species of anthracnose fungi identify Colletotrichum fructicola as the predominant virulent species in strawberry plants in Chiba Prefecture of Japan , 2016, Journal of General Plant Pathology.

[48]  Javier F. Tabima,et al.  Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps. , 2015, Fungal biology.

[49]  István Pócsi,et al.  Secondary metabolites in fungus-plant interactions , 2015, Front. Plant Sci..

[50]  S. Reissmann,et al.  Fungal effectors and plant susceptibility. , 2015, Annual review of plant biology.

[51]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[52]  J. Derisi,et al.  Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation , 2014, Genome Biology.

[53]  Konstantinos J. Mavrakis,et al.  RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer , 2014, Nature.

[54]  R. Henrik Nilsson,et al.  Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi , 2014, Database J. Biol. Databases Curation.

[55]  Tatiana Sanjuan,et al.  Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium , 2014, IMA fungus.

[56]  P. Brown,et al.  Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments , 2014, eLife.

[57]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[58]  Guren Zhang,et al.  Detection of Ophiocordyceps sinensis in the roots of plants in alpine meadows by nested-touchdown polymerase chain reaction. , 2014, Fungal biology.

[59]  A. Nakagiri,et al.  Three new species of Ophiocordyceps and overview of anamorph types in the genus and the family Ophiocordyceptaceae , 2014, Mycological Progress.

[60]  Hong Yu,et al.  Systematic analyses of Ophiocordyceps lanpingensis sp. nov., a new species of Ophiocordyceps in China. , 2013, Microbiological research.

[61]  K. Hyde,et al.  Ophiocordyceps xuefengensis sp. nov. from larvae of Phassus nodus (Hepialidae) in Hunan Province, southern China , 2013 .

[62]  Aravind Subramanian,et al.  Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State , 2013, Science.

[63]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[64]  Chengshu Wang,et al.  Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus , 2013 .

[65]  M. Caligiuri,et al.  Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia , 2013, Journal of Hematology & Oncology.

[66]  Y. Narusaka,et al.  Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. , 2013, The New phytologist.

[67]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[68]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[69]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[70]  J. Spatafora,et al.  New teleomorph combinations in the entomopathogenic genus Metacordyceps , 2012, Mycologia.

[71]  N. Hywel-Jones,et al.  Ophiocordyceps halabalaensis: a new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. , 2011, Fungal biology.

[72]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[73]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[74]  N. Hywel-Jones,et al.  Ophiocordyceps barnesii and its relationship to other melolonthid pathogens with dark stromata. , 2010, Fungal biology.

[75]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[76]  D. Hughes,et al.  The Life of a Dead Ant: The Expression of an Adaptive Extended Phenotype , 2009, The American Naturalist.

[77]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[78]  Derek A. West,et al.  The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. , 2009, Blood.

[79]  R. Cencic,et al.  Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol , 2009, PloS one.

[80]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[81]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[82]  S. Lowe,et al.  Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. , 2008, The Journal of clinical investigation.

[83]  M. C. Ruíz-Roldan,et al.  Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. , 2008, Molecular plant-microbe interactions : MPMI.

[84]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[85]  J. Glazebrook,et al.  Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis[W] , 2007, The Plant Cell Online.

[86]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[87]  J. Spatafora,et al.  Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes , 2007, Molecular ecology.

[88]  J. Spatafora,et al.  Phylogenetic classification of Cordyceps and the clavicipitaceous fungi , 2007, Studies in mycology.

[89]  E. Oerke Crop losses to pests , 2005, The Journal of Agricultural Science.

[90]  J. Spatafora,et al.  Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. , 2004, Mycological research.

[91]  S. Salzberg,et al.  Using MUMmer to Identify Similar Regions in Large Sequence Sets , 2003, Current protocols in bioinformatics.

[92]  Ziniu Yu,et al.  Molecular evidence for teleomorph–anamorph connections in Cordyceps based on ITS-5.8S rDNA sequences , 2002 .

[93]  Y. Fujita,et al.  Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. , 2001, Molecular plant-microbe interactions : MPMI.

[94]  H. Greger,et al.  Cyclopenta[b]benzofurans from Aglaia species with pronounced antifungal activity against rice blast fungus (Pyricularia grisea). , 2000, Journal of agricultural and food chemistry.

[95]  A. Osbourn,et al.  Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis , 1999, Microbiology and Molecular Biology Reviews.

[96]  A. Osbourn,et al.  The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. , 1999, Biophysical journal.

[97]  A. Osbourn,et al.  Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify different host plant saponins. , 1995, Molecular plant-microbe interactions : MPMI.

[98]  A. Osbourn,et al.  Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme , 1995, Science.

[99]  A. Osbourn,et al.  An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici , 1994 .

[100]  C. Satasook,et al.  Rocaglamide, a natural benzofuran insecticide from Aglaia odorata , 1992 .

[101]  C. Teng,et al.  PAF antagonism in vitro and in vivo by aglafoline from Aglaia elliptifolia Merr. , 1992, European journal of pharmacology.

[102]  I. Furusawa,et al.  Cloning of a melanin biosynthetic gene essential for appressorial penetration of Colletotrichum lagenarium , 1991 .

[103]  M. Pericak-Vance,et al.  Chorea-acanthocytosis: a report of three new families and implications for genetic counselling. , 1987, American journal of medical genetics.

[104]  O. Yoder,et al.  Selectable genes for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli (Colletotrichum lindemuthianum). , 1987, Gene.

[105]  C. Yanofsky,et al.  Efficient cloning of genes of Neurospora crassa. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[106]  L. Crombie,et al.  Pathogenicity of ‘take-all’ fungus to oats: Its relationship to the concentration and detoxification of the four avenacins , 1986 .

[107]  W. Timberlake,et al.  Transformation of Aspergillus nidulans by using a trpC plasmid. , 1984, Proceedings of the National Academy of Sciences of the United States of America.