Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation

In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifacts such as viscous or damped contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer– Newton method shows improved qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer– Newton method.

[1]  A. Ruina,et al.  A New Algebraic Rigid-Body Collision Law Based on Impulse Space Considerations , 1998 .

[2]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[3]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[4]  Thanh Giang,et al.  Evaluating the visual fidelity of physically based animations , 2003, ACM Trans. Graph..

[5]  Brian Mirtich,et al.  Impulse-based dynamic simulation of rigid body systems , 1996 .

[6]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[7]  Pierre Alart,et al.  Gradient Type Algorithms for 2D/3D Frictionless/Frictional MultiContact Problems , 2004 .

[8]  J. Moreau Numerical aspects of the sweeping process , 1999 .

[9]  J. Trinkle,et al.  Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples , 2001 .

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[12]  David E. Stewart,et al.  Newton-amg algorithm for solving complementarity problems arising in rigid body dynamics with frictional impacts , 2007 .

[13]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[14]  Dinesh K. Pai,et al.  Staggered projections for frictional contact in multibody systems , 2008, SIGGRAPH 2008.

[15]  Claude Lacoursière,et al.  Splitting Methods for Dry Frictional Contact Problems in Rigid Multibody Systems: Preliminary Performance Results , 2003 .

[16]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[17]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[18]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[19]  S. Billups Algorithms for complementarity problems and generalized equations , 1996 .

[20]  Dinesh K. Pai,et al.  Fast frictional dynamics for rigid bodies , 2005, SIGGRAPH 2005.

[21]  Abderrahmane Kheddar,et al.  Gauss' least constraints principle and rigid body simulations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[22]  James K. Hahn,et al.  Realistic animation of rigid bodies , 1988, SIGGRAPH.

[23]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[24]  L. Qi,et al.  A Survey of Some Nonsmooth Equations and Smoothing Newton Methods , 1999 .

[25]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[26]  Kenny Erleben,et al.  Velocity-based shock propagation for multibody dynamics animation , 2007, TOGS.

[27]  Glenn Reinman,et al.  Enabling real-time physics simulation in future interactive entertainment , 2006, Sandbox '06.

[28]  Victor J. Milenkovic,et al.  A fast impulsive contact suite for rigid body simulation , 2004, IEEE Transactions on Visualization and Computer Graphics.