Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum

Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three‐dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large‐scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.

[1]  Randall J. Platt,et al.  Efficient CRISPR/Cas9-mediated genome editing in P. falciparum , 2014, Nature Methods.

[2]  Yoshihide Hayashizaki,et al.  Histone H3 acetylated at lysine 9 in promoter is associated with low nucleosome density in the vicinity of transcription start site in human cell , 2006, Chromosome Research.

[3]  L. Bannister,et al.  Making a home for Plasmodium post-genomics: ultrastructural organization of the blood stages. , 2005 .

[4]  M. White,et al.  Transcript maturation in apicomplexan parasites. , 2014, Current opinion in microbiology.

[5]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[6]  E. Shimoni,et al.  3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum , 2011, Cellular microbiology.

[7]  S. Schreiber,et al.  Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin , 2006, Cell.

[8]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[9]  Hideki Tanizawa,et al.  Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation , 2010, Nucleic acids research.

[10]  Bradley I. Coleman,et al.  A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. , 2014, Cell host & microbe.

[11]  G. Schroth,et al.  Cohesin-mediated interactions organize chromosomal domain architecture , 2013, The EMBO journal.

[12]  M. Petter,et al.  The role of chromatin in Plasmodium gene expression , 2012, Cellular microbiology.

[13]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[14]  V. Corces,et al.  Architectural proteins: regulators of 3D genome organization in cell fate. , 2014, Trends in cell biology.

[15]  X. Su,et al.  Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation , 2013, Molecular microbiology.

[16]  C Cremer,et al.  Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. , 2000, Critical reviews in eukaryotic gene expression.

[17]  J. Dekker,et al.  Genomics tools for the unraveling of chromosome architecture , 2010, Nature Biotechnology.

[18]  S. Kappe,et al.  Malaria: progress, perils, and prospects for eradication. , 2008, The Journal of clinical investigation.

[19]  H. Stunnenberg,et al.  H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3 , 2010, PLoS pathogens.

[20]  X. Su,et al.  Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System , 2014, mBio.

[21]  Ellen Bushell,et al.  A cascade of DNA binding proteins for sexual commitment and development in Plasmodium , 2014, Nature.

[22]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[23]  A. Lamond,et al.  High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli , 2010, Molecular biology of the cell.

[24]  A. Cowman,et al.  A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria , 2006, Nature.

[25]  Kevin Marsh,et al.  Rapid switching to multiple antigenic and adhesive phenotypes in malaria , 1992, Nature.

[26]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[27]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[28]  Blaise T. F. Alako,et al.  Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum , 2009, Proceedings of the National Academy of Sciences.

[29]  K. L. Le Roch,et al.  Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication , 2012, Parasite immunology.

[30]  Yingyao Zhou,et al.  Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. , 2004, Genome research.

[31]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[32]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[33]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[34]  Zbynek Bozdech,et al.  Heterochromatin protein 1 secures survival and transmission of malaria parasites. , 2014, Cell host & microbe.

[35]  Jose-Juan Lopez-Rubio,et al.  Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. , 2009, Cell host & microbe.

[36]  Edith Heard,et al.  Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods? , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  T. Gilberger,et al.  PfSec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes , 2013, Journal of Cell Science.

[38]  C. Ouzounis,et al.  Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. , 2004, Genome research.

[39]  Zbynek Bozdech,et al.  H2A.Z and H2B.Z double‐variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum , 2013, Molecular microbiology.

[40]  Mathieu Blanchette,et al.  The three-dimensional architecture of Hox cluster silencing , 2010, Nucleic acids research.

[41]  Mathieu Blanchette,et al.  Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome Positioning , 2005, PLoS biology.

[42]  R. Emes,et al.  Control of gene expression in Plasmodium falciparum - ten years on. , 2009, Molecular and biochemical parasitology.

[43]  Eric S. Lander,et al.  Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse , 2005, Cell.

[44]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[45]  C. Pandarinath,et al.  Recruitment of PfSET2 by RNA Polymerase II to Variant Antigen Encoding Loci Contributes to Antigenic Variation in P. falciparum , 2014, PLoS pathogens.

[46]  Chris Anderson,et al.  Beyond the Sequence , 2015 .

[47]  Jordanka Zlatanova,et al.  H2A.Z: view from the top. , 2008, Structure.

[48]  Stefano Lonardi,et al.  DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum , 2014, BMC Genomics.

[49]  Hagai Ginsburg,et al.  The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites , 2008, Proceedings of the National Academy of Sciences.

[50]  Andrew S. Belmont,et al.  Large-scale chromatin organization: the good, the surprising, and the still perplexing. , 2014, Current opinion in cell biology.

[51]  Stephan C. Schuster,et al.  Nucleosome organization in the Drosophila genome , 2008, Nature.

[52]  William Stafford Noble,et al.  Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression , 2014, Genome research.

[53]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[54]  S. Ralph,et al.  Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Samuel A. Assefa,et al.  New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq , 2010, Molecular microbiology.

[56]  S. Henikoff,et al.  Regulation of nucleosome dynamics by histone modifications , 2013, Nature Structural &Molecular Biology.

[57]  Kevin J. Verstrepen,et al.  Nucleosome Positioning in Saccharomyces cerevisiae , 2011, Microbiology and Molecular Reviews.

[58]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[59]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[60]  Manuel Llinás,et al.  Mechanisms of gene regulation in Plasmodium. , 2007, The American journal of tropical medicine and hygiene.

[61]  Alisson M. Gontijo,et al.  5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites , 2007, Molecular microbiology.

[62]  A. Scherf,et al.  Clustering of dispersed ribosomal DNA and its role in gene regulation and chromosome-end associations in malaria parasites , 2010, Proceedings of the National Academy of Sciences.

[63]  Manuel Llinás,et al.  A transcriptional switch underlies commitment to sexual development in malaria parasites , 2014 .

[64]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[65]  H. Stunnenberg,et al.  Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. , 2009, Journal of proteome research.

[66]  William Stafford Noble,et al.  A Three-Dimensional Model of the Yeast Genome , 2010, Nature.

[67]  Kristin R Brogaard,et al.  A base pair resolution map of nucleosome positions in yeast , 2012, Nature.

[68]  Thor G. Theander,et al.  PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum , 2013, Nature.

[69]  Thanat Chookajorn,et al.  Epigenetic memory at malaria virulence genes , 2007, Proceedings of the National Academy of Sciences.

[70]  S. Kramer RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa , 2014, Wiley interdisciplinary reviews. RNA.

[71]  Tom Misteli,et al.  The Meaning of Gene Positioning , 2008, Cell.

[72]  Joseph D. Smith,et al.  Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes , 1995, Cell.

[73]  Leah Barrera,et al.  A high-resolution map of active promoters in the human genome , 2005, Nature.

[74]  Timothy R. Hughes,et al.  G+C content dominates intrinsic nucleosome occupancy , 2009, BMC Bioinformatics.

[75]  H. Stunnenberg,et al.  Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony , 2012, Cellular microbiology.

[76]  E. Segal,et al.  Poly(da:dt) Tracts: Major Determinants of Nucleosome Organization This Review Comes from a Themed Issue on Protein-nucleic Acid Interactions Edited , 2022 .

[77]  Anita Saraf,et al.  Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum , 2013, Genome Biology.

[78]  Liwang Cui,et al.  Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes , 2009, BMC Genomics.

[79]  D. Baker,et al.  Malaria gametocytogenesis , 2010, Molecular and biochemical parasitology.

[80]  Manuel Llinás,et al.  Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite , 2010, PLoS pathogens.

[81]  Manolis Kellis,et al.  An Epigenetic Signature for Monoallelic Olfactory Receptor Expression , 2011, Cell.

[82]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[83]  Joshua E Elias,et al.  The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries. , 2011, Cell host & microbe.

[84]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[85]  S. Lonardi,et al.  Supplemental Material to : Nucleosome landscape and control of transcription in the human malaria parasite , 2009 .

[86]  K. L. Le Roch,et al.  Post-translational modifications in Plasmodium: more than you think! , 2009, Molecular and biochemical parasitology.

[87]  G. Schotta,et al.  Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome. , 2004, Cold Spring Harbor symposia on quantitative biology.

[88]  M. Blanchette,et al.  Hox in motion: tracking HoxA cluster conformation during differentiation , 2013, Nucleic acids research.

[89]  Steven Henikoff,et al.  Histone variants — ancient wrap artists of the epigenome , 2010, Nature Reviews Molecular Cell Biology.

[90]  L. Cui,et al.  Cytotoxic Effect of Curcumin on Malaria Parasite Plasmodium falciparum: Inhibition of Histone Acetylation and Generation of Reactive Oxygen Species , 2006, Antimicrobial Agents and Chemotherapy.

[91]  Kevin Marsh,et al.  Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria , 1998, Nature Medicine.

[92]  Jun Miao,et al.  Chromatin-Mediated Epigenetic Regulation in the Malaria Parasite Plasmodium falciparum , 2010, Eukaryotic Cell.

[93]  Howard Y. Chang,et al.  Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes , 2014, Nature Biotechnology.

[94]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[95]  K. Sandhu,et al.  Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions , 2006, Nature Genetics.

[96]  M. McQueen,et al.  The Meaning of the Gene , 2000, Heredity.

[97]  S. Dimitrov,et al.  Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. , 2011, Genome research.

[98]  M. Madan Babu,et al.  Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains , 2005, Nucleic acids research.

[99]  Zbynek Bozdech,et al.  Histone Deacetylases Play a Major Role in the Transcriptional Regulation of the Plasmodium falciparum Life Cycle , 2010, PLoS pathogens.

[100]  X. Su,et al.  Histone Acetyltransferase Inhibitor Anacardic Acid Causes Changes in Global Gene Expression during In Vitro Plasmodium falciparum Development , 2008, Eukaryotic Cell.

[101]  Marc A Marti-Renom,et al.  The Three-dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation , 2022 .

[102]  Michael Y Tolstorukov,et al.  Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. , 2009, Genome research.

[103]  B. Garcia,et al.  Organismal Differences in Post-translational Modifications in Histones H3 and H4* , 2007, Journal of Biological Chemistry.

[104]  S. Lomvardas,et al.  An Epigenetic Trap Stabilizes Singular Olfactory Receptor Expression , 2013, Cell.

[105]  C. MacPherson,et al.  Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system , 2014, Nature Biotechnology.

[106]  H. Stunnenberg,et al.  H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome , 2013, Molecular microbiology.

[107]  S. Lonardi,et al.  Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. , 2013, Cell host & microbe.

[108]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[109]  Bas van Steensel,et al.  Detection of in vivo protein–DNA interactions using DamID in mammalian cells , 2007, Nature Protocols.

[110]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[111]  A. Tobin,et al.  Insights into the Plasmodium falciparum schizont phospho-proteome. , 2012, Microbes and infection.

[112]  T. Misteli Beyond the Sequence: Cellular Organization of Genome Function , 2011 .

[113]  David Fenyo,et al.  Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. , 2009, Genes & development.

[114]  H. D. del Portillo,et al.  Variant proteins of Plasmodium vivax are not clonally expressed in natural infections , 2005, Molecular microbiology.

[115]  S. Lonardi,et al.  Nucleosome occupancy at transcription start sites in the human malaria parasite: a hard-wired evolution of virulence? , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[116]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[117]  H. Stunnenberg,et al.  Placing the Plasmodium falciparum epigenome on the map. , 2012, Trends in parasitology.

[118]  Zbynek Bozdech,et al.  Epigenetic memory takes center stage in the survival strategy of malaria parasites. , 2014, Current opinion in microbiology.

[119]  L. Cui,et al.  The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. , 2006, Gene.

[120]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.