LiSb3O8 as a Prospective Anode Material for Lithium‐ion Battery

Electrochemical properties of LiSb3O8 were investigated as an anode in lithium-ion coin cells. Li insertion in this material occurs in a single step at ~0.75 V vs Li/Li+, but the corresponding Li extraction takes place in two successive stages at ~1.12 and ~1.4 V. Reversible capacities of 305 and 297 mAh/g could be obtained at 0.1 and 0.2 mA/cm2, respectively, up to 50 cycles.

[1]  R. Basu,et al.  Lithium antimonite: A new class of anode material for lithium-ion battery , 2009 .

[2]  J. Pérez-Flores,et al.  Electrochemical performances of BiSbO4 as electrode material for lithium batteries , 2008 .

[3]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[4]  N. S. Tabrizi,et al.  Sb/O nano-composites produced via Spark Discharge Generation for Li-ion battery anodes , 2007 .

[5]  Cheol‐Min Park,et al.  High-Rate Capability and Enhanced Cyclability of Antimony-Based Composites for Lithium Rechargeable Batteries , 2007 .

[6]  M. Wakihara,et al.  Construction of the Ternary Phase Diagram for the Li−Cu−Sb System as the Anode Material for a Lithium Ion Battery , 2007 .

[7]  Xiangming He,et al.  Chemical reduction of nano-scale Cu2Sb powders as anode materials for Li-ion batteries , 2006 .

[8]  J. Tarascon,et al.  Reactivity of Antimony Oxides and MSb2O6 ( M = Cu , Ni , Co ) , Trirutile-type Phases with Metallic Lithium , 2006 .

[9]  F. Martín,et al.  Electrochemical reaction of lithium with nanosized vanadium antimonate , 2006 .

[10]  Zheng-Wen Fu,et al.  Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide , 2006 .

[11]  Á. Caballero,et al.  Reaction of SbPO4 with lithium in non-aqueous electrochemical cells: preliminary study and evaluation of its electrochemical performance in anodes for lithium ion batteries , 2004 .

[12]  J. Tarascon,et al.  Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium , 2004 .

[13]  D. Billaud,et al.  Lithium insertion into new graphite–antimony composites , 2003 .

[14]  H. Sakaguchi,et al.  Anode behaviors of aluminum antimony synthesized by mechanical alloying for lithium secondary battery , 2003 .

[15]  J. Tirado Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects , 2003 .

[16]  Liquan Chen,et al.  Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries , 2001 .

[17]  J. Dahn,et al.  Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .

[18]  C. Pérez-Vicente,et al.  Electrochemical reactions of polycrystalline CrSb2 in lithium batteries , 2001 .

[19]  P. Komenda,et al.  Dimensionally stable Li-alloy electrodes for secondary batteries , 1990 .

[20]  G. Cao,et al.  A study of Zn4Sb3 as a negative electrode for secondary lithium cells , 2001 .

[21]  A. West,et al.  LiSb3O8: the first tetrarutile structure , 2000 .

[22]  M. Thackeray,et al.  Intermetallic Insertion Electrodes with a Zinc Blende‐Type Structure for Li Batteries: A Study of Li x InSb ( 0 ≤ x ≤ 3 ) , 1999 .