FADTTS: Functional analysis of diffusion tensor tract statistics

The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure.

[1]  Jan Sijbers,et al.  On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods , 2009, NeuroImage.

[2]  Adrian Bowman,et al.  Multivariate varying‐coefficient models for an ecological system , 2009 .

[3]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[4]  Heping Zhang,et al.  Statistical Analysis of Diffusion Tensors in Diffusion-weighted Magnetic Resonance Image Data ( Technical Details ) ∗ , 2007 .

[5]  Hulin Wu,et al.  Nonparametric regression methods for longitudinal data analysis , 2006 .

[6]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[7]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[8]  Hongtu Zhu,et al.  Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging , 2009, Journal of the American Statistical Association.

[9]  Shu-Wei Sun,et al.  Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia , 2003, NeuroImage.

[10]  James O. Ramsay,et al.  Applied Functional Data Analysis: Methods and Case Studies , 2002 .

[11]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[12]  M. Moseley Diffusion tensor imaging and aging – a review , 2002, NMR in biomedicine.

[13]  T. Hsing,et al.  Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data , 2010, 1211.2137.

[14]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[15]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[16]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[17]  Carl-Fredrik Westin,et al.  Tract-based morphometry for white matter group analysis , 2009, NeuroImage.

[18]  T. Yee,et al.  Local regression for vector responses , 2006 .

[19]  A. Pfefferbaum,et al.  Diffusion tensor imaging and aging , 2006, Neuroscience & Biobehavioral Reviews.

[20]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[21]  Brandon Whitcher,et al.  Statistical group comparison of diffusion tensors via multivariate hypothesis testing , 2007, Magnetic resonance in medicine.

[22]  Martin Styner,et al.  FRATS: Functional Regression Analysis of DTI Tract Statistics , 2010, IEEE Transactions on Medical Imaging.

[23]  Guido Gerig,et al.  Constrained Data Decomposition and Regression for Analyzing Healthy Aging from Fiber Tract Diffusion Properties , 2009, MICCAI.

[24]  R. McKinstry,et al.  Diffusion tensor imaging and tractography of human brain development. , 2006, Neuroimaging clinics of North America.

[25]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[26]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[27]  John S. Duncan,et al.  Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis , 2008, NeuroImage.

[28]  David Bonekamp,et al.  Diffusion tensor imaging in children and adolescents: Reproducibility, hemispheric, and age-related differences , 2007, NeuroImage.

[29]  Nancy K. Rollins,et al.  Clinical applications of diffusion tensor imaging and tractography in children , 2007, Pediatric Radiology.

[30]  Paul A. Yushkevich,et al.  Structure-specific statistical mapping of white matter tracts , 2007, NeuroImage.

[31]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[32]  Jianhua Z. Huang,et al.  Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.

[33]  Yixin Fang,et al.  Testing for familial aggregation of functional traits. , 2009, Statistics in medicine.

[34]  K. Worsley,et al.  Unified univariate and multivariate random field theory , 2004, NeuroImage.

[35]  John H. Gilmore,et al.  Prenatal Mild Ventriculomegaly Predicts Abnormal Development of the Neonatal Brain , 2008, Biological Psychiatry.

[36]  Paul M. Thompson,et al.  Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors , 2008, IEEE Transactions on Medical Imaging.

[37]  Khader M Hasan,et al.  Computation of the fractional anisotropy and mean diffusivity maps without tensor decoding and diagonalization: Theoretical analysis and validation , 2003, Magnetic resonance in medicine.

[38]  A L Alexander,et al.  Analytical computation of the eigenvalues and eigenvectors in DT-MRI. , 2001, Journal of magnetic resonance.

[39]  Derek K. Jones,et al.  The effect of filter size on VBM analyses of DT-MRI data , 2005, NeuroImage.

[40]  Jianqing Fan,et al.  Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models , 2000 .

[41]  Marc G. Genton,et al.  Local Polynomial Quantile Regression With Parametric Features , 2009 .

[42]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[43]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[44]  Antoni Rodríguez-Fornells,et al.  Age-related water diffusion changes in human brain: A voxel-based approach , 2007, NeuroImage.

[45]  Ciprian M Crainiceanu,et al.  Penalized Functional Regression , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[46]  Runze Li,et al.  MULTIVARIATE VARYING COEFFICIENT MODEL FOR FUNCTIONAL RESPONSES. , 2012, Annals of statistics.

[47]  Michael R. Kosorok,et al.  Bootstraps of sums of independent but not identically distributed stochastic processes , 2003 .

[48]  Guido Gerig,et al.  Diffusion tensor imaging: Application to the study of the developing brain. , 2007, Journal of the American Academy of Child and Adolescent Psychiatry.

[49]  Dinggang Shen,et al.  White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients , 2009, NeuroImage.

[50]  Christian Beaulieu,et al.  Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment , 2007, NeuroImage.

[51]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[52]  Zongwu Cai,et al.  Adaptive varying‐coefficient linear models , 2000 .

[53]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[54]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[55]  Martin Styner,et al.  Multivariate Varying Coefficient Models for DTI Tract Statistics , 2010, MICCAI.

[56]  A. Zellner An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .

[57]  John H. Gilmore,et al.  Group analysis of DTI fiber tract statistics with application to neurodevelopment , 2009, NeuroImage.

[58]  Christian Beaulieu,et al.  Diffusion tensor imaging of neurodevelopment in children and young adults , 2005, NeuroImage.

[59]  Heping Zhang,et al.  A statistical framework for the classification of tensor morphologies in diffusion tensor images. , 2006, Magnetic resonance imaging.

[60]  J. Ibrahim,et al.  Statistical Analysis of Diffusion Tensors in Diffusion-Weighted Magnetic Resonance Imaging Data , 2007 .

[61]  F. Yao,et al.  Penalized spline models for functional principal component analysis , 2006 .

[62]  Brian Caffo,et al.  Longitudinal functional principal component analysis. , 2010, Electronic journal of statistics.

[63]  Matthew C. Keller,et al.  Increased sensitivity in neuroimaging analyses using robust regression , 2005, NeuroImage.

[64]  Rachid Deriche,et al.  Mathematical methods for diffusion MRI processing , 2009, NeuroImage.

[65]  Hongtu Zhu,et al.  A Statistical Analysis of Brain Morphology Using Wild Bootstrapping , 2007, IEEE Transactions on Medical Imaging.

[66]  R. Dougherty,et al.  Cross‐subject comparison of principal diffusion direction maps , 2005, Magnetic resonance in medicine.