Conventional processes for the upgradation of residual feedstocks, viz., thermal cracking and catalytic cracking are carried out in the temperature range of 400–520°C. Such high temperatures can in principle be substituted by acoustic cavitation. In the present work, two vacuum residues, namely, Arabian mix vacuum residue (AMVR) and Bombay high vacuum residue (BHVR) and one asphalt, viz., Haldia asphalt (HA) were subjected to acoustic cavitation for different reaction times from 15 min to 120 min at ambient temperature and pressure. An attempt has been made to seek a performance comparison of two devices of acoustic cavitation, namely, ultrasonic bath and ultrasonic horn with regard to their ability to upgrade the petroleum residues to lighter, more value-added products mainly the hydrocarbons boiling in the range of gas oil fraction. Another attempt has been made to study the effect of ultrasound on the upgradation of the residue when it is emulsified in water with the help of different surfactants. For all the cases, a kinetic model has been developed based on the constituents of the residue so as to get an insight into the reaction mechanism. The study revealed that ultrasonic horn is more effective in bringing about the upgradation than ultrasonic bath and that the acoustic cavitation of the aqueous emulsified hydrocarbon mixture could reduce the asphaltenes content to a greater extent than the acoustic cavitation of non-emulsified hydrocarbon mixture. The reduction in asphaltenes content of BHVR was found to be more followed by AMVR followed by HA. The variation in the rate constants was found to be feed specific and the rate constants for the conditions of maximum conversion of asphaltenes to gas oil for AMVR, BHVR and HA were found to be 0.29 × 10−4 s−1, 1.4 × 10−4 s−1 and 0.23 × 10−4 s−1, respectively.
Les procedes traditionnels visant a enrichir la concentration des matieres premieres residuelles, c.-a-d. le craquage thermique et le craquage catalytique, se font a des temperatures variant entre 400 et 520°C. Des temperatures aussi elevees peuvent, en principe, etre substituees par la cavitation acoustique. Dans le cadre de cette etude, deux residus sous vide, a savoir le melange arabe de residus sous vide (MARSV) et le residu de vide pousse de Bombay (RVPB) et un asphalte, c.-a-d. l'asphalte Haldia (AH), ont ete soumis a la cavitation acoustique selon differents temps de reaction, variant entre 15 et 120 minutes, a la temperature et la pression ambiantes. Une tentative a ete faite pour chercher a obtenir une comparaison du rendement des deux dispositifs de cavitation acoustique, a savoir un bain a ultrasons et une sonde a ultrasons, en ce qui a trait a leur capacite a enrichir la concentration des residus de petrole de facon a obtenir des produits plus legers a valeur ajoutee accrue, principalement les hydrocarbures en ebullition dans la gamme de fractions gaz-petrole. Une autre tentative a ete faite pour etudier l'effet des ultrasons sur l'enrichissement de la concentration du residu lorsqu'il est en emulsion dans l'eau avec l'aide de differents agents de surface. Dans tous les cas, on a elabore un modele cinetique fonde sur les elements constitutifs du residu de facon a obtenir un apercu du mecanisme de reaction. L'etude a revele que la sonde a ultrasons est plus efficace pour provoquer l'enrichissement de la concentration que le bain a ultrasons et la cavitation acoustique du melange d'hydrocarbures en emulsion aqueuse pouvait reduire le contenu en asphaltenes dans une plus grande mesure que la cavitation acoustique d'un melange d'hydrocarbures non en emulsion. La reduction du contenu en asphaltenes du RVPB s'est averee etre la plus grande, suivie du MARSV et de l'AH. La variation des constantes de vitesse de reduction s'est averee etre propre a la charge et les vitesses de reduction concernant les conditions de la conversion maximale des asphaltenes en gaz-petrole du MARSV, du RVPB et de l'AH se sont averees etre de 0,29 × 10−4 s−1, 1,4 × 10−4 s−1 et 0,23 × 10−4 s−1, respectivement. Mots-cles: ultrason, cavitation, residu de petrole, agent de surface, emulsion, cinetique.
[1]
I. Wiehe,et al.
Asphaltenes, resins, and other petroleum macromolecules
,
1996
.
[2]
Murray R. Gray,et al.
Coking kinetics of asphaltenes as a function of chemical structure
,
2003
.
[3]
T. Yen,et al.
A plausible reaction pathway of asphaltene under ultrasound
,
2001
.
[4]
Michael T. Klein,et al.
Asphaltene and Resid Pyrolysis. 2. The Effect of Reaction Environment on Pathways and Selectivities
,
2001
.
[5]
T. Yen,et al.
An upgrading process through cavitation and surfactant
,
1993
.
[6]
Timothy J. Mason,et al.
Enhancement of chemical reactivity by power ultrasound: an alternative interpretation of the hot spot
,
1991
.
[7]
Aniruddha B. Pandit,et al.
Kinetic Studies of Low Severity Visbreaking
,
2004
.
[8]
T. Yen,et al.
Novel extraction of tar sands by sonication with the aid of in-situ surfactants
,
1990
.
[9]
J. F. Mosby,et al.
Process characterization of expanded-bed reactors in series
,
1986
.
[10]
R. Henderson,et al.
Consider modifying your refinery to handle heavy opportunity crude oils : Refining developments
,
2005
.
[11]
Murray R. Gray,et al.
Lumped kinetics of hydrocracking of bitumen
,
1997
.