Properties and phenomena relevant to CH4‐CO2 replacement in hydrate‐bearing sediments

[1] The injection of carbon dioxide, CO2, into methane hydrate-bearing sediments causes the release of methane, CH4, and the formation of carbon dioxide hydrate, even if global pressure-temperature conditions remain within the CH4 hydrate stability field. This phenomenon, known as CH4-CO2 exchange or CH4-CO2 replacement, creates a unique opportunity to recover an energy resource, methane, while entrapping a greenhouse gas, carbon dioxide. Multiple coexisting processes are involved during CH4-CO2 replacement, including heat liberation, mass transport, volume change, and gas production among others. Therefore, the comprehensive analysis of CH4-CO2 related phenomena involves physico-chemical parameters such as diffusivities, mutual solubilities, thermal properties, and pressure- and temperature-dependent phase conditions. We combine new experimental results with published studies to generate a data set we use to evaluate reaction rates, to analyze underlying phenomena, to explore the pressure-temperature region for optimal exchange, and to anticipate potential geomechanical implications for CH4-CO2 replacement in hydrate-bearing sediments.

[1]  Jaewon Jang,et al.  Gas production from hydrate-bearing sediments , 2011 .

[2]  Jong Won Jung,et al.  Gas production from hydrate-bearing sediments: Geo-mechanical implications , 2010 .

[3]  J. Carlos Santamarina,et al.  Water‐CO2‐mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage , 2010 .

[4]  J. Carlos Santamarina,et al.  Volume change associated with formation and dissociation of hydrate in sediment , 2010 .

[5]  Karsten Pruess,et al.  Laboratory Flow Experiments for Visualizing Carbon Dioxide-Induced, Density-Driven Brine Convection , 2009, Transport in Porous Media.

[6]  Weon Shik Han,et al.  Effects of density and mutual solubility of a CO2-brine system on CO2 storage in geological formations: "Warm" vs. "cold" formations , 2009 .

[7]  Tae Sup Yun,et al.  Physical properties of hydrate‐bearing sediments , 2009 .

[8]  E. D. Sloan,et al.  Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth , 2009, Science.

[9]  Hailong Li,et al.  Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes , 2009 .

[10]  Ran Qi,et al.  A three-phase four-component streamline-based simulator to study carbon dioxide storage , 2009 .

[11]  A. Nur,et al.  Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane‐ethane hydrate , 2009 .

[12]  Shuanshi Fan,et al.  Determination of appropriate condition on replacing methane from hydrate with carbon dioxide , 2008 .

[13]  A NOVEL APPROACH TO MEASURING METHANE DIFFUSIVITY THROUGH A HYDRATE FILM USING DIFFERENTIAL SCANNING CALORIMETRY , 2008 .

[14]  S. Okabe,et al.  Thermodynamic and transport properties of CO2, CO2–O2, and CO2–H2 mixtures at temperatures of 300 to 30,000 K and pressures of 0.1 to 10 MPa , 2008 .

[15]  Junfeng Qin,et al.  Experimental measurements of vapor-liquid equilibria of the H2O+CO2+CH4 ternary system , 2008 .

[16]  Shuanshi Fan,et al.  Replacement of Methane from Quartz Sand-Bearing Hydrate with Carbon Dioxide-in-Water Emulsion , 2008 .

[17]  B. A. Baldwin,et al.  EXPERIMENTAL HYDRATE FORMATION AND GAS PRODUCTION SCENARIOS BASED ON CO2 SEQUESTRATION. , 2008 .

[18]  Masaki Ota,et al.  Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 , 2007 .

[19]  Rui Sun,et al.  An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments , 2007 .

[20]  S. Patil,et al.  Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report , 2007 .

[21]  A. Mohammadi,et al.  Comment on “Data and prediction of water content of high pressure nitrogen, methane and natural gas” by G.K. Folas, E.W. Froyna, J. Lovland, G.M. Kontogeorgis, E. Solbraa, Fluid Phase Equilib. 252 (2007) 162–174 , 2007 .

[22]  William F. Waite,et al.  Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate , 2007 .

[23]  G. Kontogeorgis,et al.  Data and prediction of water content of high pressure nitrogen, methane and natural gas , 2007 .

[24]  Mona J. Mølnvik,et al.  Thermodynamic Models for Calculating Mutual Solubilities in H2O–CO2–CH4 Mixtures , 2006 .

[25]  Phillip Servio,et al.  Prediction of methane and carbon dioxide solubility in water in the presence of hydrate , 2006 .

[26]  Keun-Pil Park,et al.  Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates , 2006, Proceedings of the National Academy of Sciences.

[27]  A. N. Novruzov,et al.  Molecular-dynamic calculation of spectral characteristics of absorption of infrared radiation by (H2O)j and (CH4)i(H2O)n clusters , 2006 .

[28]  Y. Mori,et al.  Clathrate-hydrate film growth along water/hydrate-former phase boundaries—numerical heat-transfer study , 2006 .

[29]  T. Buanes,et al.  The phase-field theory applied to CO2 and CH4 hydrate , 2006 .

[30]  A. N. Novruzov,et al.  Molecular-Dynamic Calculation of Spectral Characteristics of Absorption of Infrared Radiation by (H 2 O) j , 2006 .

[31]  Qinjun Kang,et al.  Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments , 2005 .

[32]  Zhenhao Duan,et al.  Prediction of CH4 and CO2 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials , 2005 .

[33]  Masaki Ota,et al.  Replacement of CH4 in the hydrate by use of liquid CO2 , 2005 .

[34]  L. Stern,et al.  Direct measurement of methane hydrate composition along the hydrate equilibrium boundary. , 2005, The journal of physical chemistry. B.

[35]  Masaki Ota,et al.  Methane recovery from methane hydrate using pressurized CO2 , 2005 .

[36]  Graydon K. Anderson Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation , 2004 .

[37]  K. Kawamura,et al.  Mechanism of Molecular Diffusion in Ice Crystals , 2004 .

[38]  A. Milkov Global estimates of hydrate-bound gas in marine sediments: how much is really out there? , 2004 .

[39]  Ji-Ho Yoon,et al.  Transformation of Methane Hydrate to Carbon Dioxide Hydrate: In Situ Raman Spectroscopic Observations , 2004 .

[40]  E. Peltzer,et al.  Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability , 2003 .

[41]  Karsten Pruess,et al.  CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar , 2003 .

[42]  G. K. Anderson,et al.  Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation , 2003 .

[43]  Zhenhao Duan,et al.  An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar , 2003 .

[44]  Ji-Ho Yoon,et al.  Rigorous Approach to the Prediction of the Heat of Dissociation of Gas Hydrates , 2003 .

[45]  D. Staykova,et al.  Structural studies of gas hydrates , 2003 .

[46]  P. Englezos,et al.  Morphology of methane and carbon dioxide hydrates formed from water droplets , 2003 .

[47]  T. Collett Energy resource potential of natural gas hydrates , 2002 .

[48]  Temperature and Pressure Dependence of the Speed of Sound in Seawater , 2002 .

[49]  B. Trout,et al.  Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations , 2002 .

[50]  Huen Lee,et al.  Multiple-Phase Hydrate Equilibria of the Ternary Carbon Dioxide, Methane, and Water Mixtures , 2001 .

[51]  T. Komai,et al.  Dynamics of Reformation and Replacement of CO2 and CH4 Gas Hydrates , 2000 .

[52]  Y. Mori,et al.  Modeling of Simultaneous Heat and Mass Transfer to/from and across a Hydrate Film , 2000 .

[53]  T. Ebinuma,et al.  Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide , 1999 .

[54]  H. Corti,et al.  Dielectric and volumetric properties of supercritical carbon dioxide(1)+methanol(2) mixtures at 323.15 K , 1999 .

[55]  Stephen H. Kirby,et al.  Polycrystalline Methane Hydrate: Synthesis from Superheated Ice, and Low-Temperature Mechanical Properties , 1998 .

[56]  W. Wakeham,et al.  The Viscosity of Carbon Dioxide , 1998 .

[57]  I︠u︡. F. Makogon Hydrates of Hydrocarbons , 1997 .

[58]  Izuo Aya,et al.  Solubility of CO 2 and density of CO 2 hydrate at 30 MPa , 1997 .

[59]  Seiya Hirohama,et al.  Conversion of CH4-Hydrate to CO2-Hydrate in Liquid CO2 , 1996 .

[60]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[61]  P. Clancy,et al.  The kinetics of crystal growth and dissolution from the melt in Lennard‐Jones systems , 1995 .

[62]  Kamy Sepehrnoori,et al.  CO2 Flow Patterns Under Multiphase Flow: Heterogeneous Field-Scale Conditions , 1994 .

[63]  P. Clancy,et al.  Computer Simulation of the Crystal Growth and Dissolution of Natural Gas Hydrates a , 1994 .

[64]  T. K. Bose,et al.  Determination of the density from simultaneous measurements of the refractive index and the dielectric constant of gaseous CH4, SF6, and CO2 , 1993 .

[65]  J. Trusler,et al.  The speed of sound and derived thermodynamic properties of methane at temperatures between 275 K and 375 K and pressures up to 10 MPa , 1992 .

[66]  R. J. Frank,et al.  Hydrates of carbon dioxide and methane mixtures , 1991 .

[67]  W. Wakeham,et al.  The Transport Properties of Carbon Dioxide , 1990 .

[68]  K. Kvenvolden Methane hydrate — A major reservoir of carbon in the shallow geosphere? , 1988 .

[69]  Cesar Zarcone,et al.  Numerical models and experiments on immiscible displacements in porous media , 1988, Journal of Fluid Mechanics.

[70]  Syed S. H. Rizvi,et al.  Kinetics of methane hydrate decomposition , 1987 .

[71]  Yash Paul Handa,et al.  Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter , 1986 .

[72]  J. Chaussy,et al.  Thermodynamic and transport properties of UPt3 , 1986 .

[73]  T. S. Brown,et al.  Phase equilibria in the carbon dioxide + ethane system. Topical report , 1985 .

[74]  R. Gagnon,et al.  Determination of acoustic velocities of clathrate hydrates by Brillouin spectroscopy , 1985 .

[75]  J. Israelachvili Intermolecular and surface forces , 1985 .

[76]  Frank J. Millero,et al.  International one-atmosphere equation of state of seawater , 1981 .

[77]  R. Kobayashi,et al.  Vapor-liquid equilibrium of the methane-carbon dioxide system at low temperatures , 1978 .

[78]  J. Pankove,et al.  Temperature and pressure dependences of Zn-doped GaN , 1978 .

[79]  G. H. Nancollas,et al.  The kinetics of crystal growth and dissolution of strontium oxalate monohydrate , 1976 .

[80]  Alvin Bradshaw,et al.  Direct measurement of thermal expansion of sea water under pressure , 1970 .

[81]  P. Witherspoon,et al.  Correlation of diffusion coefficients for paraffin, aromatic, and cycloparaffin hydrocarbons in water. [Châ, CâHâ, CâHâ, butane, pentane, benzene, and cycloalkanes] , 1969 .

[82]  W. J. Thomas,et al.  Measurement of the diffusion coefficients of carbon dioxide and nitrous oxide in water and aqueous solutions of glycerol , 1965 .

[83]  Donald L. Katz,et al.  Phase Equilibria in the Carbon Dioxide–Methane System , 1954 .

[84]  E. D. Sloan,et al.  Solubility Effects on Growth and Dissolution of Methane Hydrate Needles , 2022 .