Effects of polymer matrices on calibration functions of luminescent oxygen sensors based on porphyrin ketone complexes.
暂无分享,去创建一个
The design of luminescent oxygen sensors is guided by optimizing sensitivity and/or the form of the calibration function. Both qualities are governed by the molecular processes of luminescence quenching. To evaluate the influence of matrix effects, we prepared membranes based on oxygen-sensitive phosphorescent complexes of porphyrin ketones dissolved in plasticizer-free poly(vinyl chloride) (PVC) and polystyrene (PS). In a PVC matrix, both platinum(II) and palladium(II) octaethylporphyrin ketones exhibited perfectly linear Stern-Volmer intensity plots and almost single-exponential excited state decays. In a PS matrix, the sensitivity of palladium(II) octaethylporphyrin ketone was among the highest reported to date. Yet, slightly nonlinear Stern-Volmer plots and nonexponential decays illustrate the significance of matrix effects of PS. Addition of plasticizers to PVC-based sensors allowed tuning of the oxygen sensitivity in a wide range, while the Stern-Volmer plots became pronouncedly nonlinear. For the plasticizer bis(2-ethylhexyl) adipate, the decay profile was single-exponential in the absence but nonexponential in the presence of oxygen, which is attributed to a distribution of quenching rate constants.