Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector

This note presents an optimized substrate-free focal plane array (FPA), which is implemented in an optical readout uncooled infrared (IR) detector. The supporting frame of such FPA is a temperature-variable one due to the large decreases in both the heat capacity and the thermal conductance. This brings a unique thermal characteristic: the supporting frame functions as a “thermal isolation” frame which reduces the thermal conductance and therefore increases the temperature change and also functions as a “thermal diffusion” frame which certainly results in the temperature prechange in the ones not absorbing IR radiation. This characterization could significantly increase the temperature change of microcantilevers and therefore improve the performance of the substrate-free FPA. In the proposed IR detector, the fabricated 160×160 FPA has an average noise equivalent temperature difference (NETD) and a response time of 330 mK and 16 ms, respectively. The performance of the IR detector theoretically increases b...