A visible band index for remote sensing leaf chlorophyll content at the canopy scale

[1]  J. Hanway How a corn plant develops , 1966 .

[2]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[3]  E. B. Knipling Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation , 1970 .

[4]  L. D. Miller,et al.  Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado , 1972 .

[5]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[6]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[7]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[8]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[9]  R. Jackson,et al.  Interpreting vegetation indices , 1991 .

[10]  J. Schepers,et al.  Comparison of corn leaf nitrogen concentration and chlorophyll meter readings , 1992 .

[11]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[12]  A. Wellburn The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution* , 1994 .

[13]  A. Gitelson,et al.  Quantitative estimation of chlorophyll-a using reflectance spectra : experiments with autumn chestnut and maple leaves , 1994 .

[14]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[15]  A. Masoni,et al.  Spectral Properties of Leaves Deficient in Iron, Sulfur, Magnesium, and Manganese , 1996 .

[16]  J. Schepers,et al.  Analysis of Aerial Photography for Nitrogen Stress within Corn Fields , 1996 .

[17]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[18]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[19]  J. Schepers,et al.  Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply , 1996 .

[20]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[21]  P. Pinter,et al.  Measuring Wheat Senescence with a Digital Camera , 1999 .

[22]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[23]  W. Wilhelm,et al.  Comparison of three leaf area index meters in a corn canopy , 2000 .

[24]  M. Louhaichi,et al.  Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat , 2001 .

[25]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[26]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[27]  P. Scharf,et al.  Remote sensing for nitrogen management , 2002 .

[28]  P. Scharf,et al.  Calibrating Corn Color from Aerial Photographs to Predict Sidedress Nitrogen Need , 2002 .

[29]  K. Shepherd,et al.  Development of Reflectance Spectral Libraries for Characterization of Soil Properties , 2002 .

[30]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[31]  P. Scharf,et al.  Corn yield response to nitrogen fertilizer timing and deficiency level , 2002 .

[32]  M. S. Moran,et al.  Remote Sensing for Crop Management , 2003 .

[33]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[34]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[35]  N. Oppelt,et al.  Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data , 2004 .

[36]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[37]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[38]  C. Daughtry,et al.  Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status , 2005, Precision Agriculture.

[39]  G. Carter,et al.  Derivative Analysis of AVIRIS Data for Crop Stress Detection , 2005 .

[40]  J. Schepers,et al.  An Algorithm for Corn Nitrogen Recommendations Using a Chlorophyll Meter Based Sufficiency Index , 2007 .

[41]  J. Eitel,et al.  Using in‐situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status , 2007 .

[42]  Brigitte Leblon,et al.  Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model , 2007, International Journal of Applied Earth Observation and Geoinformation.

[43]  F. Baret,et al.  Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. , 2006, Journal of experimental botany.

[44]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[45]  Frédéric Baret,et al.  Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots , 2008, Sensors.

[46]  John R. Miller,et al.  Remote Estimation of Crop Chlorophyll Content Using Spectral Indices Derived From Hyperspectral Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[47]  J. Shanahana,et al.  Responsive in-season nitrogen management for cereals Responsive in-season nitrogen management for cereals , 2008 .

[48]  M. Vincini,et al.  A broad-band leaf chlorophyll vegetation index at the canopy scale , 2008, Precision Agriculture.

[49]  E. Hunt,et al.  Combined Spectral Index to Improve Ground‐Based Estimates of Nitrogen Status in Dryland Wheat , 2008 .

[50]  R. H. Fox,et al.  Crop Monitoring Technologies to Assess Nitrogen Status , 2008 .

[51]  A. Gitelson,et al.  Application of Spectral Remote Sensing for Agronomic Decisions , 2008 .

[52]  D. Roberts,et al.  Sensitivity of Narrow-Band and Broad-Band Indices for Assessing Nitrogen Availability and Water Stress in an Annual Crop , 2008 .

[53]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[54]  Martha C. Anderson,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale , 2009 .

[55]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[56]  Wouter Dorigo,et al.  Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[57]  John H. Prueger,et al.  Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices , 2010, Remote. Sens..

[58]  Weixing Cao,et al.  Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[59]  Geert Verhoeven,et al.  It's all about the format – unleashing the power of RAW aerial photography , 2010 .

[60]  Luis Alonso,et al.  Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC) , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[61]  C. Daughtry,et al.  Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index , 2011 .

[62]  T. Sakamoto,et al.  Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth , 2011 .

[63]  I. Herrmann,et al.  LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands , 2011 .

[64]  S. Labbé,et al.  A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring , 2012, Precision Agriculture.

[65]  Andrew K. Skidmore,et al.  Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[66]  N. Batjes A Globally Distributed Soil Spectral Library Visible Near Infrared Diffuse Reflectance Spectra , 2014 .

[67]  J. Schepers,et al.  Crop Nitrogen Requirement and Fertilization , 2015 .

[68]  N. H. Brogea,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2022 .