Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology

Abstract Hematite exists ubiquitously in soils and sediments, and is commonly aluminium (Al)-substituted. This study investigated systematically the effects of Al substitution on the visible diffuse reflectance spectrum (DRS) of hematite by using several sets of synthetic samples. We found that the position and amplitude of the characteristic absorption band of hematite (estimated from the first- and second-order derivative curves of the Kubelka-Munk remission function spectrum derived from the DRS) was significantly affected by the degree of Al substitution as well as by sample grain morphology. Therefore, there are ambiguities in quantifying the degree of Al substitution and the mass concentration of hematite using DRS. Nevertheless, if hematite forms under similar environmental conditions, it is possible to establish a transfer function between the DRS parameters and hematite concentration as discussed here for a Chinese loess-palaeosol sequence.

[1]  U. Schwertmann Some Properties of Soil and Synthetic Iron Oxides , 1988 .

[2]  V. Barrón,et al.  The magnetism of micro-sized hematite explained , 2010 .

[3]  M. Raymo,et al.  The 41 kyr world: Milankovitch's other unsolved mystery , 2003 .

[4]  M. Pomiès,et al.  XRD study of the goethite-hematite transformation: Application to the identification of heated prehistoric pigments , 1998 .

[5]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[6]  David M. Sherman,et al.  Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV , 1985 .

[7]  A. Rousset,et al.  Study of Al-substituted hematites, prepared from thermal treatment of lepidocrocite , 2001 .

[8]  A. Roberts,et al.  Detecting missing beats in the Mediterranean climate rhythm from magnetic identification of oxidized sapropels (Ocean Drilling Program Leg 160) , 2006 .

[9]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[10]  Darrell G. Schulze,et al.  Relationship Among Derivative Spectroscopy, Color, Crystallite Dimensions, and Al Substitution of Synthetic Goethites and Hematites , 1986 .

[11]  Subir K. Banerjee,et al.  A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferrimagnetic background , 2002 .

[12]  V. Barrón,et al.  Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils , 1998 .

[13]  T. Yamazaki,et al.  Environmental rock‐magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene , 1997 .

[14]  D. Schulze,et al.  Iron oxide mineralogy of some soils of two river terrace sequences in Spain , 1980 .

[15]  D. P. Franzmeier,et al.  Characterization of Iron Oxide Minerals by Second-Derivative Visible Spectroscopy 1 , 1984 .

[16]  Jun Chen,et al.  Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry , 2001, Quaternary Research.

[17]  J. Bloemendal,et al.  Magnetic Enhancement and Iron Oxides in the Upper Luochuan Loess–Paleosol Sequence, Chinese Loess Plateau , 2007 .

[18]  Andrew P. Roberts,et al.  Characterization of hematite ( α -Fe 2 O 3 ), goethite ( α -FeOOH), greigite (Fe 3 S 4 ), and pyrrhotite (Fe 7 S 8 ) using first-order reversal curve diagrams , 2006 .

[19]  W. Balsam,et al.  Visible Spectroscopy--A Rapid Method for Determining Hematite and Goethite Concentration in Geological Materials: RESEARCH METHOD PAPER , 1991 .

[20]  A. Roberts,et al.  Three million years of monsoon variability over the northern Sahara , 2003 .

[21]  V. Barrón,et al.  Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites , 1994 .

[22]  Subir K. Banerjee,et al.  A multi-proxy study of Argentina loess: Marine oxygen isotope stage 4 and 5 environmental record from pedogenic hematite , 2006 .

[23]  W. Balsam,et al.  Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility , 2004 .

[24]  V. Barrón,et al.  Phosphate Adsorption by Aluminous Hematites of Different Shapes , 1988 .

[25]  G. Kletetschka,et al.  Unique thermoremanent magnetization of multidomain sized hematite: Implications for magnetic anomalies , 2000 .

[26]  G. Kletetschka,et al.  Multidomain hematite: A source of planetary magnetic anomalies? , 2001 .

[27]  Fahu Chen,et al.  Determining the climatic boundary between the Chinese loess and palaeosol: evidence from aeolian coarse-grained magnetite , 2002 .

[28]  S. B. Weed,et al.  Mössbauer study of aluminum-substituted hematites , 1982 .

[29]  T. D. WnIrB,et al.  Electronic spectra of Fe3 + oxides and oxide hydroxides in the near IR to near UV , 2022 .

[30]  V. Barrón,et al.  The Visible Diffuse Reflectance Spectrum in Relation to the Color and Crystal Properties of Hematite , 2003 .

[31]  G. M. da Costa,et al.  Al hematites prepared by homogeneous precipitation of oxinates: material characterization and determination of the Morin transition , 2002 .

[32]  C. Serna,et al.  Relation of Infrared, Crystallochemical, and Morphological Properties of Al-Substituted Hematites , 1984 .

[33]  D. Ming,et al.  Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: Possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars , 2005 .

[34]  B. Maher,et al.  Evidence against dust-mediated control of glacial–interglacial changes in atmospheric CO2 , 2001, Nature.

[35]  J. Bloemendal,et al.  An assessment of magnetic and geochemical indicators of weathering and pedogenesis at two contrasting sites on the Chinese Loess plateau , 2008 .

[36]  J. Eyre,et al.  Mössbauer spectroscopy analysis of iron‐containing minerals in the Chinese loess , 1995 .

[37]  U. Schwertmann Relations Between Iron Oxides, Soil Color, and Soil Formation , 1993 .

[38]  Andrew P. Roberts,et al.  Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams , 2006 .

[39]  A. Roberts,et al.  What do the HIRM and S‐ratio really measure in environmental magnetism? , 2007 .

[40]  U. Schwertmann,et al.  QUANTITATIVE RELATIONSHIPS BETWEEN SOIL COLOR AND HEMATITE CONTENT , 1983 .

[41]  J. Bloemendal,et al.  Contrasting behavior of hematite and goethite within paleosol S5 of the Luochuan profile, Chinese Loess Plateau , 2006 .