WHITTLE ESTIMATION OF ARCH MODELS

For a class of parametric ARCH models, Whittle estimation based on squared observations is shown to be [square root of n]-consistent and asymptotically normal. Our conditions require the squares to have short memory autocorrelation, by comparison with the work of Zaffaroni (1999, “Gaussian Inference on Certain Long-Range Dependent Volatility Models,” Preprint), who established the same properties on the basis of an alternative class of models with martingale difference levels and long memory autocorrelated squares.

[1]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[2]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[3]  R. Leipus,et al.  STATIONARY ARCH MODELS: DEPENDENCE STRUCTURE AND CENTRAL LIMIT THEOREM , 2000, Econometric Theory.

[4]  Paolo Zaffaroni,et al.  Nonlinear time series with long memory: a model for stochastic volatility , 1998 .

[5]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[6]  Oliver Linton,et al.  Adaptive Estimation in ARCH Models , 1993, Econometric Theory.

[7]  P. Robinson,et al.  Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression , 1991 .

[8]  Andrew A. Weiss,et al.  Asymptotic Theory for ARCH Models: Estimation and Testing , 1986, Econometric Theory.

[9]  Daniel B. Nelson ARCH models as diffusion approximations , 1990 .

[10]  John L. Lumley,et al.  The structure of atmospheric turbulence , 1964 .

[11]  Chris A. J. Klaassen,et al.  Efficient estimation in semiparametric GARCH models , 1996 .

[12]  Daniel B. Nelson Stationarity and Persistence in the GARCH(1,1) Model , 1990, Econometric Theory.

[13]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[14]  Weighted Least Squares Estimators on the Frequency Domain for the Parameters of a Time Series , 1988 .

[15]  R. Lumsdaine,et al.  Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models , 1996 .

[16]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[17]  P. Robinson,et al.  LONG AND SHORT MEMORY CONDITIONAL HETEROSKEDASTICITY IN ESTIMATING THE MEMORY PARAMETER OF LEVELS , 1999, Econometric Theory.

[18]  Peter M. Robinson,et al.  Modelling Nonlinearity and Long Memory in Time Series - (Now published in 'Nonlinear Dynamics and Time Series', C D Cutler and D T Kaplan (eds), Fields Institute Communications, 11 (1997), pp.61-170.) , 1997 .

[19]  E. Hannan The asymptotic theory of linear time-series models , 1973, Journal of Applied Probability.

[20]  W. Stout Almost sure convergence , 1974 .

[21]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[22]  P. Robinson,et al.  Alternative models for stationary stochastic processes , 1978 .

[23]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[24]  Paolo Zaffaroni,et al.  Gaussian inference on certain long-range dependent volatility models , 2003 .

[25]  P. Bloomfield An exponential model for the spectrum of a scalar time series , 1973 .

[26]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[27]  Masanobu Taniguchi,et al.  On estimation of the integrals of the fourth order cumulant spectral density , 1982 .

[28]  Bruce E. Hansen,et al.  Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator , 1994, Econometric Theory.

[29]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .