Logics for Order-of-Magnitude Qualitative Reasoning: Formalizing Negligibility

Qualitative reasoning deals with information expressed in terms of qualitative classes and relations among them, such as comparability, negligibility or closeness. In this work, we focus on the different logic-based approaches to the notions of negligibility developed by our group.

[1]  Núria Agell,et al.  Using L-fuzzy sets to introduce information theory into qualitative reasoning , 2014, Fuzzy Sets Syst..

[2]  Didier Dubois,et al.  Qualitative reasoning based on fuzzy relative orders of magnitude , 2003, IEEE Trans. Fuzzy Syst..

[3]  Philippe Dague Numeric Reasoning with Relative Orders of Magnitude , 1993, AAAI.

[4]  N. Piera,et al.  Binary relations for qualitative reasoning , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[5]  Andrzej Salwicki,et al.  Algorithmic Logic , 1987 .

[6]  Ewa Orłowska,et al.  Dual Tableaux: Foundations, Methodology, Case Studies , 2010 .

[7]  Emilio Muñoz-Velasco,et al.  Relational dual tableau decision procedures and their applications to modal and intuitionistic logics , 2014, Ann. Pure Appl. Log..

[8]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[9]  Till Mossakowski,et al.  Qualitative reasoning about relative direction of oriented points , 2012, Artif. Intell..

[10]  Emilio Muñoz-Velasco,et al.  Order of Magnitude Qualitative Reasoning with Bidirectional Negligibility , 2005, CAEPIA.

[11]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[12]  Ullrich Hustadt,et al.  Two Proof Systems for Peirce Algebras , 2003, RelMiCS.

[13]  Emilio Muñoz-Velasco,et al.  A Logic for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance , 2007, CAEPIA.

[14]  Angel Mora,et al.  An ATP of a Relational Proof System for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance , 2008, PRICAI.

[15]  Michael L. Mavrovouniotis,et al.  Reasoning with Orders of Magnitude and Approximate Relations , 1987, AAAI.

[16]  Angel Mora,et al.  Implementing a relational theorem prover for modal logic , 2011, Int. J. Comput. Math..

[17]  Anthony G. Cohn,et al.  Multi-Dimensional Modal Logic as a Framework for Spatio-Temporal Reasoning , 2002, Applied Intelligence.

[18]  Didier Dubois,et al.  Granular computing with closeness and negligibility relations , 2002 .

[19]  Ewa Orlowska,et al.  Relational Semantics for Nonclassical Logics: Formulas are Relations , 1994 .

[20]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[21]  Daniel Shevitz,et al.  Relating confidence to measured information uncertainty in qualitative reasoning , 2011, 2011 Annual Meeting of the North American Fuzzy Information Processing Society.

[22]  José Luis García-Lapresta,et al.  Allowing agents to be imprecise: A proposal using multiple linguistic terms , 2014, Inf. Sci..

[23]  Philippe Dague Symbolic Reasoning with Relative Orders of Magnitude , 1993, IJCAI.

[24]  Manuel Ojeda-Aciego,et al.  A Multimodal Logic Approach to Order of Magnitude Qualitative Reasoning with Comparability and Negligibility Relations , 2005, Fundam. Informaticae.

[25]  Benjamin Kuipers,et al.  Proving Properties of Continuous Systems: Qualitative Simulation and Temporal Logic , 1997, Artif. Intell..

[26]  Núria Agell,et al.  Relative and absolute order-of-magnitude models unified , 2005, Annals of Mathematics and Artificial Intelligence.

[27]  Honghai Liu,et al.  Recent Advances in Fuzzy Qualitative Reasoning , 2011, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[28]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[29]  F. Wolter,et al.  Qualitative spatiotemporal representation and reasoning: a computational perspective , 2003 .

[30]  Emilio Muñoz-Velasco,et al.  A logic framework for reasoning with movement based on fuzzy qualitative representation , 2014, Fuzzy Sets Syst..

[31]  Angel Mora,et al.  Tableau reductions: Towards an optimal decision procedure for the modal necessity , 2016, J. Appl. Log..

[32]  Manuel Ojeda-Aciego,et al.  Relational Approach to Order-of-Magnitude Reasoning , 2006, Theory and Applications of Relational Structures as Knowledge Instruments.

[33]  Emilio Muñoz-Velasco,et al.  A Hybrid Approach to Closeness in the Framework of Order of Magnitude Qualitative Reasoning , 2016, HAIS.

[34]  Beata Konikowska,et al.  Rasiowa-Sikorski deduction systems in computer science applications , 2002, Theor. Comput. Sci..

[35]  Emilio Muñoz-Velasco,et al.  A Propositional Dynamic Logic Approach for Order of Magnitude Reasoning , 2008, IBERAMIA.

[36]  Philippe Dague,et al.  Mathematical Foundations of Qualitative Reasoning , 2004, AI Mag..

[37]  Emilio Muñoz-Velasco,et al.  A PDL Approach for Qualitative Velocity , 2011, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[38]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[39]  Emilio Muñoz-Velasco,et al.  Dual tableau for a multimodal logic for order of magnitude qualitative reasoning with bidirectional negligibility , 2009, Int. J. Comput. Math..

[40]  Emilio Muñoz-Velasco,et al.  Relational dual tableau decision procedure for modal logic K , 2012, Log. J. IGPL.

[41]  Angel Mora,et al.  A new deduction system for deciding validity in modal logic K , 2011, Log. J. IGPL.

[42]  Patrick Blackburn,et al.  Modal logic: a semantic perspective , 2007, Handbook of Modal Logic.

[43]  Philippe Balbiani,et al.  Reasoning about negligibility and proximity in the set of all hyperreals , 2016, J. Appl. Log..

[44]  Honghai Liu,et al.  Fuzzy Qualitative Robot Kinematics , 2008, IEEE Transactions on Fuzzy Systems.

[45]  Olivier Raiman,et al.  Order of Magnitude Reasoning , 1986, Artif. Intell..

[46]  Emilio Muñoz-Velasco,et al.  Relational approach for a logic for order of magnitude qualitative reasoning with negligibility, non-closeness and distance , 2009, Log. J. IGPL.

[47]  Joanna Golinska-Pilarek,et al.  Tableaux and Dual Tableaux: Transformation of Proofs , 2007, Stud Logica.

[48]  Tinko Tinchev,et al.  An Essay in Combinatory Dynamic Logic , 1991, Inf. Comput..

[49]  E. Davis Order of Magnitude Comparisons of Distance , 1999, J. Artif. Intell. Res..