p53 regulates cytoskeleton remodeling to suppress tumor progression

[1]  J. Pollard,et al.  Immune cell promotion of metastasis , 2015, Nature Reviews Immunology.

[2]  Michael P. Sheetz,et al.  Appreciating force and shape — the rise of mechanotransduction in cell biology , 2014, Nature Reviews Molecular Cell Biology.

[3]  Eun Mi Kim,et al.  Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion , 2014, EMBO reports.

[4]  K. Kawauchi,et al.  Understanding p53: new insights into tumor suppression , 2014, Expert review of anticancer therapy.

[5]  D. Schlaepfer,et al.  FAK in cancer: mechanistic findings and clinical applications , 2014, Nature Reviews Cancer.

[6]  Eun Mi Kim,et al.  Nuclear and cytoplasmic p53 suppress cell invasion by inhibiting respiratory Complex-I activity via Bcl-2 family proteins , 2014, Oncotarget.

[7]  Jie Yan,et al.  Force-dependent conformational switch of α-catenin controls vinculin binding , 2014, Nature Communications.

[8]  Adrian Krainer,et al.  p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state , 2014, Proceedings of the National Academy of Sciences.

[9]  X. Wan,et al.  Suppression of the epithelial-mesenchymal transition by SHARP1 is linked to the NOTCH1 signaling pathway in metastasis of endometrial cancer , 2014, BMC Cancer.

[10]  F. Nestle,et al.  Diverse matrix metalloproteinase functions regulate cancer amoeboid migration , 2014, Nature Communications.

[11]  K. Chiam,et al.  Loss of p53 Enhances NF‐κB‐Dependent Lamellipodia Formation , 2014, Journal of cellular physiology.

[12]  A. Puisieux,et al.  Oncogenic roles of EMT-inducing transcription factors , 2014, Nature Cell Biology.

[13]  M. De la Fuente,et al.  Chronic Inflammation and Cytokines in the Tumor Microenvironment , 2014, Journal of immunology research.

[14]  F. Lin,et al.  14-3-3τ Promotes Breast Cancer Invasion and Metastasis by Inhibiting RhoGDIα , 2014, Molecular and Cellular Biology.

[15]  Aron Parekh,et al.  Cellular traction stresses mediate extracellular matrix degradation by invadopodia. , 2014, Acta biomaterialia.

[16]  David Piwnica-Worms,et al.  Contribution of p53 to metastasis. , 2014, Cancer discovery.

[17]  K. Chiam,et al.  p53-mediated activation of the mitochondrial protease HtrA2/Omi prevents cell invasion , 2014, The Journal of cell biology.

[18]  D. Lane,et al.  Drugging the p53 pathway: understanding the route to clinical efficacy , 2014, Nature Reviews Drug Discovery.

[19]  P. Taimen,et al.  Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. , 2014, The Journal of clinical investigation.

[20]  D. Lane,et al.  Drugging the p53 pathway: understanding the route to clinical efficacy , 2014, Nature Reviews Drug Discovery.

[21]  Liang Zhao,et al.  Overexpression of RhoGDI, a novel predictor of distant metastasis, promotes cell proliferation and migration in hepatocellular carcinoma , 2014, FEBS letters.

[22]  J. Krstić,et al.  Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells , 2014, TheScientificWorldJournal.

[23]  Elaine Fuchs,et al.  Direct in Vivo RNAi Screen Unveils Myosin IIa as a Tumor Suppressor of Squamous Cell Carcinomas , 2014, Science.

[24]  J. Norman,et al.  Mutant p53 Regulates Dicer through p63-dependent and -independent Mechanisms to Promote an Invasive Phenotype* , 2013, The Journal of Biological Chemistry.

[25]  A. von Kriegsheim,et al.  RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1–IQGAP1 complex , 2013, The Journal of cell biology.

[26]  Colin K. Choi,et al.  Rac1 is deactivated at integrin activation sites through an IQGAP1–filamin-A–RacGAP1 pathway , 2013, Journal of Cell Science.

[27]  K. Thiel,et al.  The Consequence of Oncomorphic TP53 Mutations in Ovarian Cancer , 2013, International journal of molecular sciences.

[28]  Laurence Choulier,et al.  Activation of p53 pathway by Nutlin-3a inhibits the expression of the therapeutic target α5 integrin in colon cancer cells. , 2013, Cancer letters.

[29]  D. Schiff,et al.  A novel PTEN/mutant p53/c-Myc/Bcl-XL axis mediates context-dependent oncogenic effects of PTEN with implications for cancer prognosis and therapy. , 2013, Neoplasia.

[30]  P. Dong Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis , 2013 .

[31]  Jan Paul Medema,et al.  Cancer stem cells: The challenges ahead , 2013, Nature Cell Biology.

[32]  Y. Barrandon,et al.  Actin filament dynamics impacts keratinocyte stem cell maintenance , 2013, EMBO molecular medicine.

[33]  F. Campbell,et al.  Rescue of glandular dysmorphogenesis in PTEN-deficient colorectal cancer epithelium by PPARγ-targeted therapy , 2013, Oncogene.

[34]  R. Cagan,et al.  Caspase signalling in the absence of apoptosis drives Jnk‐dependent invasion , 2013, EMBO reports.

[35]  G. Berx,et al.  Regulatory networks defining EMT during cancer initiation and progression , 2013, Nature Reviews Cancer.

[36]  Stephan Huveneers,et al.  Mechanosensitive systems at the cadherin–F-actin interface , 2013, Journal of Cell Science.

[37]  K. Vousden,et al.  p53 mutations in cancer , 2013, Nature Cell Biology.

[38]  Kenneth M. Yamada,et al.  At the leading edge of three-dimensional cell migration , 2012, Journal of Cell Science.

[39]  A. Levine,et al.  Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. , 2012, Cancer research.

[40]  H. Hermeking,et al.  MicroRNAs in the p53 network: micromanagement of tumour suppression , 2012, Nature Reviews Cancer.

[41]  S. Yamada,et al.  N-cadherin-mediated cell–cell adhesion promotes cell migration in a three-dimensional matrix , 2012, Journal of Cell Science.

[42]  J. Godet,et al.  Integrin α5β1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma. , 2012, Cancer research.

[43]  K. Hogue,et al.  Mutant p53 interactome identifies nardilysin as a p53R273H‐specific binding partner that promotes invasion , 2012, EMBO reports.

[44]  Ling Xia,et al.  Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell–like phenotype in human colorectal cancer cells , 2012, Cancer medicine.

[45]  K. Khanna,et al.  Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11 , 2012, Oncogene.

[46]  Jing Liu,et al.  Soft fibrin gels promote selection and growth of tumourigenic cells , 2012, Nature Materials.

[47]  J. Norman,et al.  Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion , 2012, Oncogene.

[48]  Wei-Guo Zhu,et al.  Surf the Post-translational Modification Network of p53 Regulation , 2012, International journal of biological sciences.

[49]  Kenneth M. Yamada,et al.  Nonpolarized signaling reveals two distinct modes of 3D cell migration , 2012, The Journal of cell biology.

[50]  Zhihua Liu,et al.  Involvement of S100A14 Protein in Cell Invasion by Affecting Expression and Function of Matrix Metalloproteinase (MMP)-2 via p53-dependent Transcriptional Regulation* , 2012, The Journal of Biological Chemistry.

[51]  Casey M. Kraning-Rush,et al.  Cellular Traction Stresses Increase with Increasing Metastatic Potential , 2012, PloS one.

[52]  M. R. Kim,et al.  Activation of p53-p21 is closely associated with the acquisition of resistance to apoptosis caused by β1-integrin silencing in head and neck cancer cells. , 2012, Biochemical and biophysical research communications.

[53]  S. Deb,et al.  Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. , 2012, Carcinogenesis.

[54]  P. Graves,et al.  p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. , 2012, Archives of biochemistry and biophysics.

[55]  A. Menssen,et al.  miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions , 2011, Cell cycle.

[56]  Stefan Wiemann,et al.  MicroRNA-200c Represses Migration and Invasion of Breast Cancer Cells by Targeting Actin-Regulatory Proteins FHOD1 and PPM1F , 2011, Molecular and Cellular Biology.

[57]  U. Moll,et al.  SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis , 2011, Cell Death and Differentiation.

[58]  N. Sethi,et al.  Notch signalling in cancer progression and bone metastasis , 2011, British Journal of Cancer.

[59]  Nam-Gyun Kim,et al.  p53 and MicroRNA-34 Are Suppressors of Canonical Wnt Signaling , 2011, Science Signaling.

[60]  Yong Jin Choi,et al.  miR-34 miRNAs provide a barrier for somatic cell reprogramming , 2011, Nature Cell Biology.

[61]  Hendrik Lehnert,et al.  Interaction of tumor cells with the microenvironment , 2011, Cell Communication and Signaling.

[62]  P. Keely Mechanisms by Which the Extracellular Matrix and Integrin Signaling Act to Regulate the Switch Between Tumor Suppression and Tumor Promotion , 2011, Journal of Mammary Gland Biology and Neoplasia.

[63]  G. Melino p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53 , 2011, Cell Death and Differentiation.

[64]  Antonio Rosato,et al.  A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. , 2011, Cancer cell.

[65]  S. Courtneidge,et al.  The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function , 2011, Nature Reviews Molecular Cell Biology.

[66]  Guixue Wang,et al.  Id1-induced inhibition of p53 facilitates endothelial cell migration and tube formation by regulating the expression of beta1-integrin , 2011, Molecular and Cellular Biochemistry.

[67]  Tae Jin Lee,et al.  p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2 , 2011, The Journal of experimental medicine.

[68]  F. Talos,et al.  Functional Inactivation of Endogenous MDM2 and CHIP by HSP90 Causes Aberrant Stabilization of Mutant p53 in Human Cancer Cells , 2011, Molecular Cancer Research.

[69]  S. Hilsenbeck,et al.  Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. , 2011, Journal of the National Cancer Institute.

[70]  Varda Rotter,et al.  Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. , 2011, Genes & cancer.

[71]  O. Sansom,et al.  p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival , 2011, Cell Research.

[72]  Yanhong Zhang,et al.  Mutant p53 Disrupts MCF-10A Cell Polarity in Three-dimensional Culture via Epithelial-to-mesenchymal Transitions* , 2011, The Journal of Biological Chemistry.

[73]  K. Hulkower,et al.  Cell Migration and Invasion Assays as Tools for Drug Discovery , 2011, Pharmaceutics.

[74]  V. Rotter,et al.  Mutant p53R175H upregulates Twist1 expression and promotes epithelial–mesenchymal transition in immortalized prostate cells , 2011, Cell Death and Differentiation.

[75]  N. Carragher,et al.  Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. , 2011, Cancer research.

[76]  Karen H. Vousden,et al.  p53 and its mutants in tumor cell migration and invasion , 2011, The Journal of cell biology.

[77]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[78]  M. Tada,et al.  Mutant p53 R248Q but not R248W enhances in vitro invasiveness of human lung cancer NCI-H1299 cells. , 2010, Biomedical research.

[79]  P. Defilippi,et al.  Integrin signalling adaptors: not only figurants in the cancer story , 2010, Nature Reviews Cancer.

[80]  Milind B. Suraokar,et al.  TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs , 2010, Nature.

[81]  Francisco J. Sánchez-Rivera,et al.  Stage-specific sensitivity to p53 restoration during lung cancer progression , 2010, Nature.

[82]  Liang Zhao,et al.  Comparative proteomic analysis identifies proteins associated with the development and progression of colorectal carcinoma , 2010, The FEBS journal.

[83]  L. Raptis,et al.  Doubles Game: Src-Stat3 versus p53-PTEN in Cellular Migration and Invasion , 2010, Molecular and Cellular Biology.

[84]  V. Rotter,et al.  Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells , 2010, The Journal of experimental medicine.

[85]  Pere Roca-Cusachs,et al.  Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. , 2010, Developmental cell.

[86]  F. Ferrari,et al.  A MicroRNA Targeting Dicer for Metastasis Control , 2010, Cell.

[87]  S. Yonemura,et al.  α-Catenin as a tension transducer that induces adherens junction development , 2010, Nature Cell Biology.

[88]  C. Maki,et al.  Nutlin-3a Induces Cytoskeletal Rearrangement and Inhibits the Migration and Invasion Capacity of p53 Wild-Type Cancer Cells , 2010, Molecular Cancer Therapeutics.

[89]  R. Zeillinger,et al.  Alternative splicing of p53 and p73: the novel p53 splice variant p53δ is an independent prognostic marker in ovarian cancer , 2010, Oncogene.

[90]  V. Rotter,et al.  Mutant p53 gain-of-function in cancer. , 2010, Cold Spring Harbor perspectives in biology.

[91]  Lingyi Chen,et al.  A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells , 2009, Proceedings of the National Academy of Sciences.

[92]  J. Norman,et al.  Mutant p53 Drives Invasion by Promoting Integrin Recycling , 2009, Cell.

[93]  G. Berx,et al.  Involvement of members of the cadherin superfamily in cancer. , 2009, Cold Spring Harbor perspectives in biology.

[94]  Julia Schüler,et al.  The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs , 2009, Nature Cell Biology.

[95]  You-ji Feng,et al.  Elevated expression of p53 gain-of-function mutation R175H in endometrial cancer cells can increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway , 2009, Molecular Cancer.

[96]  O. Destaing,et al.  Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions , 2009, Journal of Cell Science.

[97]  Y. Furukawa,et al.  XEDAR as a putative colorectal tumor suppressor that mediates p53-regulated anoikis pathway , 2009, Oncogene.

[98]  Gaudenz Danuser,et al.  Coordination of Rho GTPase activities during cell protrusion , 2009, Nature.

[99]  Kenneth M. Yamada,et al.  Random versus directionally persistent cell migration , 2009, Nature Reviews Molecular Cell Biology.

[100]  M. Brizzi,et al.  Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression. , 2009, Cancer research.

[101]  Ker-Chau Li,et al.  p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug , 2009, Nature Cell Biology.

[102]  D. Green,et al.  Cytoplasmic functions of the tumour suppressor p53 , 2009, Nature.

[103]  R. Eves,et al.  p53 Suppresses Src-Induced Podosome and Rosette Formation and Cellular Invasiveness through the Upregulation of Caldesmon , 2009, Molecular and Cellular Biology.

[104]  Antonio Rosato,et al.  A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis , 2009, Cell.

[105]  Erik Sahai,et al.  The actin cytoskeleton in cancer cell motility , 2009, Clinical & Experimental Metastasis.

[106]  Viola Vogel,et al.  Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. , 2009, Current opinion in cell biology.

[107]  Gerhard Christofori,et al.  EMT, the cytoskeleton, and cancer cell invasion , 2009, Cancer and Metastasis Reviews.

[108]  T. Acott,et al.  Specialized podosome- or invadopodia-like structures (PILS) for focal trabecular meshwork extracellular matrix turnover. , 2008, Investigative ophthalmology & visual science.

[109]  Andrew J. Lindsay,et al.  Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments , 2008, The Journal of cell biology.

[110]  J. Visvader,et al.  The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. , 2008, Cancer research.

[111]  H. Izumi,et al.  Twist and p53 reciprocally regulate target genes via direct interaction , 2008, Oncogene.

[112]  Ana Catarina Martins Grandela Regulation of apoptosis and differentiation by P53 in human embryonic stem cells , 2008 .

[113]  Guillaume Charras,et al.  Blebs lead the way: how to migrate without lamellipodia , 2008, Nature Reviews Molecular Cell Biology.

[114]  A. Puisieux,et al.  Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition , 2008, PloS one.

[115]  C. Turner,et al.  Paxillin comes of age , 2008, Journal of Cell Science.

[116]  N. Tanaka,et al.  Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. , 2008, Biochemical and biophysical research communications.

[117]  R. Weinberg,et al.  Growth-Inhibitory and Tumor- Suppressive Functions of p53 Depend on Its Repression of CD44 Expression , 2008, Cell.

[118]  O. Fackler,et al.  Cell motility through plasma membrane blebbing , 2008, The Journal of cell biology.

[119]  V. Rotter,et al.  Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy , 2008, Cell cycle.

[120]  P. Mattila,et al.  Filopodia: molecular architecture and cellular functions , 2008, Nature Reviews Molecular Cell Biology.

[121]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[122]  E. Lander,et al.  Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. , 2008, Cancer research.

[123]  Nobuyuki Tanaka,et al.  p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation , 2008, Nature Cell Biology.

[124]  Shahin Rafii,et al.  Migratory neighbors and distant invaders: tumor-associated niche cells. , 2008, Genes & development.

[125]  V. Torre,et al.  Properties of the Force Exerted by Filopodia and Lamellipodia and the Involvement of Cytoskeletal Components , 2007, PloS one.

[126]  T. Morita,et al.  Caldesmon suppresses cancer cell invasion by regulating podosome/invadopodium formation , 2007 .

[127]  Y. Jo,et al.  Effect of KAI1/CD82 on the beta1 integrin maturation in highly migratory carcinoma cells. , 2007, Biochemical and biophysical research communications.

[128]  Pierre Roux,et al.  Loss of p53 promotes RhoA–ROCK-dependent cell migration and invasion in 3D matrices , 2007, The Journal of cell biology.

[129]  G. Christofori,et al.  Increased tumor cell dissemination and cellular senescence in the absence of β1‐integrin function , 2007, The EMBO journal.

[130]  G. Salvesen,et al.  Identification of proteolytic cleavage sites by quantitative proteomics. , 2007, Journal of proteome research.

[131]  M. Olivier,et al.  Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database , 2007, Human mutation.

[132]  J. Norman,et al.  αvβ3 and α5β1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration , 2007, The Journal of cell biology.

[133]  J. Condeelis,et al.  Regulation of the actin cytoskeleton in cancer cell migration and invasion. , 2007, Biochimica et biophysica acta.

[134]  G. Blandino,et al.  Mutant p53: an oncogenic transcription factor , 2007, Oncogene.

[135]  A. Fersht,et al.  Structure–function–rescue: the diverse nature of common p53 cancer mutants , 2007, Oncogene.

[136]  T. Soussi p53 alterations in human cancer: more questions than answers , 2007, Oncogene.

[137]  S. Linder The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. , 2007, Trends in cell biology.

[138]  J. Garlick,et al.  Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. , 2007, Genes & development.

[139]  Hartmut Land,et al.  Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility , 2007, Nature Structural &Molecular Biology.

[140]  M. Clarke,et al.  Cancer stem cells: models and concepts. , 2007, Annual review of medicine.

[141]  Sarah A. Boswell,et al.  RETRACTED: RhoE Is a Pro-Survival p53 Target Gene that Inhibits ROCK I-Mediated Apoptosis in Response to Genotoxic Stress , 2006, Current Biology.

[142]  Dihua Yu,et al.  Wild-type p53 Inhibits Nuclear Factor-κB–Induced Matrix Metalloproteinase-9 Promoter Activation: Implications for Soft Tissue Sarcoma Growth and Metastasis , 2006, Molecular Cancer Research.

[143]  B. van de Water,et al.  Focal Adhesion Kinase and Protein Kinase B Cooperate to Suppress Doxorubicin-Induced Apoptosis of Breast Tumor Cells , 2006, Molecular Pharmacology.

[144]  R. Grosse,et al.  Staying in shape with formins. , 2006, Developmental cell.

[145]  B. Webb,et al.  Caldesmon is an integral component of podosomes in smooth muscle cells , 2006, Journal of Cell Science.

[146]  H. Niwa,et al.  Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. , 2006, Biochemical and biophysical research communications.

[147]  B. Gumbiner,et al.  Regulation of cadherin-mediated adhesion in morphogenesis , 2005, Nature Reviews Molecular Cell Biology.

[148]  Neil O. Carragher,et al.  The role of focal-adhesion kinase in cancer — a new therapeutic opportunity , 2005, Nature Reviews Cancer.

[149]  R. Hruban,et al.  Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. , 2005, Cancer cell.

[150]  L. Jennings,et al.  Tetraspanin CD82 Attenuates Cellular Morphogenesis through Down-regulating Integrin α6-Mediated Cell Adhesion* , 2005, Journal of Biological Chemistry.

[151]  Ettore Appella,et al.  p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression , 2005, Nature Cell Biology.

[152]  R. Mullins,et al.  Drosophila Spire is an actin nucleation factor , 2005, Nature.

[153]  P. Jackson,et al.  KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells , 2005, Oncogene.

[154]  L. Strong,et al.  Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome , 2004, Cell.

[155]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[156]  C. Turner,et al.  Paxillin: adapting to change. , 2004, Physiological reviews.

[157]  S. Sheng The promise and challenge toward the clinical application of maspin in cancer. , 2004, Frontiers in bioscience : a journal and virtual library.

[158]  S. Ramaswamy,et al.  Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis , 2004, Cell.

[159]  J. Berg,et al.  Myosin-X provides a motor-based link between integrins and the cytoskeleton , 2004, Nature Cell Biology.

[160]  V. Golubovskaya,et al.  Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. , 2004, Biochimica et biophysica acta.

[161]  G. Firestein,et al.  p53 down‐regulates matrix metalloproteinase‐1 by targeting the communications between AP‐1 and the basal transcription complex , 2004, Journal of cellular biochemistry.

[162]  Xin A. Zhang,et al.  Requirement of the p130CAS-Crk Coupling for Metastasis Suppressor KAI1/CD82-mediated Inhibition of Cell Migration* , 2003, Journal of Biological Chemistry.

[163]  J. S. Rao,et al.  Molecular mechanisms of glioma invasiveness: the role of proteases , 2003, Nature Reviews Cancer.

[164]  Yi Zheng,et al.  p19Arf-p53 Tumor Suppressor Pathway Regulates Cell Motility by Suppression of Phosphoinositide 3-Kinase and Rac1 GTPase Activities* , 2003, The Journal of Biological Chemistry.

[165]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[166]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[167]  Shishinn Sun,et al.  PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells. , 2002, The Journal of general virology.

[168]  P. Roux,et al.  Regulation of Cdc42‐mediated morphological effects: a novel function for p53 , 2002, The EMBO journal.

[169]  Jiayuh Lin,et al.  p53 regulates Stat3 phosphorylation and DNA binding activity in human prostate cancer cells expressing constitutively active Stat3 , 2002, Oncogene.

[170]  B. Fingleton,et al.  Matrix Metalloproteinase Inhibitors and Cancer—Trials and Tribulations , 2002, Science.

[171]  R. Grenman,et al.  Adenoviral delivery of p53 gene suppresses expression of collagenase-3 (MMP-13) in squamous carcinoma cells , 2002, Oncogene.

[172]  A. Yang,et al.  On the shoulders of giants: p63, p73 and the rise of p53. , 2002, Trends in genetics : TIG.

[173]  David A. Cheresh,et al.  Role of integrins in cell invasion and migration , 2002, Nature Reviews Cancer.

[174]  H. Biliran,et al.  Pleiotrophic inhibition of pericellular urokinase-type plasminogen activator system by endogenous tumor suppressive maspin. , 2001, Cancer research.

[175]  T. Mak,et al.  Regulation of PTEN transcription by p53. , 2001, Molecular cell.

[176]  T. Yeatman,et al.  Role of Src expression and activation in human cancer , 2000, Oncogene.

[177]  R. Sager,et al.  The surface of prostate carcinoma DU145 cells mediates the inhibition of urokinase-type plasminogen activator by maspin. , 2000, Cancer research.

[178]  M. Capogrossi,et al.  Wild-type p53 gene transfer inhibits invasion and reduces matrix metalloproteinase-2 levels in p53-mutated human melanoma cells. , 2000, The Journal of investigative dermatology.

[179]  R. Altman,et al.  Wild Type and Mutant p53 Differentially Regulate the Gene Expression of Human Collagenase-3 (hMMP-13)* , 2000, The Journal of Biological Chemistry.

[180]  R. Mamillapalli,et al.  Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases , 2000, Current Biology.

[181]  E. Appella,et al.  p53 Regulates the Expression of the Tumor Suppressor Gene Maspin* , 2000, The Journal of Biological Chemistry.

[182]  P. Andreasen,et al.  The plasminogen activation system in tumor growth, invasion, and metastasis , 2000, Cellular and Molecular Life Sciences CMLS.

[183]  K. Miura,et al.  The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[184]  P. Scambler,et al.  RhoE Regulates Actin Cytoskeleton Organization and Cell Migration , 1998, Molecular and Cellular Biology.

[185]  N. Thornberry,et al.  Caspases Cleave Focal Adhesion Kinase during Apoptosis to Generate a FRNK-like Polypeptide* , 1998, The Journal of Biological Chemistry.

[186]  T. Mitchison,et al.  Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. , 1998, Science.

[187]  M. Mattei,et al.  A New Member of the Rho Family, Rnd1, Promotes Disassembly of Actin Filament Structures and Loss of Cell Adhesion , 1998, The Journal of cell biology.

[188]  A. Pardee,et al.  Tissue-type plasminogen activator is a target of the tumor suppressor gene maspin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[189]  Y. Sun,et al.  Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter , 1997, Molecular and cellular biology.

[190]  G. Rosen,et al.  Cleavage of Focal Adhesion Kinase by Caspases during Apoptosis* , 1997, The Journal of Biological Chemistry.

[191]  L. Van Aelst,et al.  Rho GTPases and signaling networks. , 1997, Genes & development.

[192]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[193]  J. Otte,et al.  Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. , 1995, Nucleic acids research.

[194]  S. Santoro,et al.  Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[195]  J. Sheu,et al.  Splicing mutations of the p53 gene in human hepatocellular carcinoma. , 1993, Cancer research.

[196]  C. Bird,et al.  Morphological aspects of glucocorticoid‐induced cell death in human lymphoblastoid cells , 1978, The Journal of pathology.

[197]  Wei Liu,et al.  The downregulation of miR-200c/141 promotes ZEB1/2 expression and gastric cancer progression , 2014, Medical Oncology.

[198]  M. Hung,et al.  p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs , 2011, Nature Cell Biology.

[199]  Dihua Yu,et al.  Wild-type p53 inhibits nuclear factor-kappaB-induced matrix metalloproteinase-9 promoter activation: implications for soft tissue sarcoma growth and metastasis. , 2006, Molecular cancer research : MCR.

[200]  D. A. Hanson,et al.  Focal adhesion kinase: in command and control of cell motility , 2005, Nature Reviews Molecular Cell Biology.

[201]  P. Herrlich,et al.  CD44: From adhesion molecules to signalling regulators , 2003, Nature Reviews Molecular Cell Biology.

[202]  Taylor Murray,et al.  Cancer Statistics, 2001 , 2001, CA: a cancer journal for clinicians.

[203]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.