Molecular Basis for Cross-Linking of Actin Filaments: Structure of the α-Actinin Rod

We have determined the crystal structure of the two central repeats in the alpha-actinin rod at 2.5 A resolution. The repeats are connected by a helical linker and form a symmetric, antiparallel dimer in which the repeats are aligned rather than staggered. Using this structure, which reveals the structural principle that governs the architecture of alpha-actinin, we have devised a plausible model of the entire alpha-actinin rod. The electrostatic properties explain how the two alpha-actinin subunits assemble in an antiparallel fashion, placing the actin-binding sites at both ends of the rod. This molecular architecture results in a protein that is able to form cross-links between actin filaments.

[1]  S. A. Johnston,et al.  Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. , 1994, Analytical biochemistry.

[2]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[3]  D R Critchley,et al.  Analysis of the phasing of four spectrin-like repeats in alpha-actinin. , 1994, European journal of biochemistry.

[4]  Alfonso Mondragón,et al.  Structures of Two Repeats of Spectrin Suggest Models of Flexibility , 1999, Cell.

[5]  C. Gahmberg,et al.  Binding of the Cytoplasmic Domain of Intercellular Adhesion Molecule-2 (ICAM-2) to α-Actinin* , 1996, Journal of Biological Chemistry.

[6]  P. Lyu,et al.  Energetic contribution of solvent-exposed ion pairs to alpha-helix structure. , 1992, Journal of molecular biology.

[7]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[8]  D. Branton,et al.  Interchain binding at the tail end of the Drosophila spectrin molecule. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Speicher,et al.  Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. , 1992, The Journal of biological chemistry.

[10]  A. Rowe,et al.  Further analysis of the role of spectrin repeat motifs in α-actinin dimer formation , 1997, European Biophysics Journal.

[11]  E. Kahana,et al.  Properties of the spectrin‐like structural element of smooth‐muscle α‐actinin , 1991 .

[12]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[13]  K. Diederichs Structural superposition of proteins with unknown alignment and detection of topological similarity using a six‐dimensional search algorithm , 1995, Proteins.

[14]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[15]  M. Saraste,et al.  Evolution of the spectrin repeat , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  D. Staunton,et al.  Association of intercellular adhesion molecule-1 (ICAM-1) with actin- containing cytoskeleton and alpha-actinin , 1992, The Journal of cell biology.

[17]  A J Rowe,et al.  Association of structural repeats in the alpha-actinin rod domain. Alignment of inter-subunit interactions. , 1995, Journal of molecular biology.

[18]  H. Yajima,et al.  The N-Terminal Z Repeat 5 of Connectin/Titin Binds to the C-Terminal Region of α-Actinin , 1997 .

[19]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[20]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[21]  Y. Gache,et al.  Properties of two isoforms of human blood platelet α‐actinin , 1985 .

[22]  R. Hodges,et al.  Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils. , 1998, Journal of molecular biology.

[23]  M. Beckerle Zyxin: Zinc fingers at sites of cell adhesion , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  M Nilges,et al.  Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. , 1997, Journal of molecular biology.

[25]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[26]  G J Barton,et al.  ALSCRIPT: a tool to format multiple sequence alignments. , 1993, Protein engineering.

[27]  T. Tanaka,et al.  Substructure and higher structure of chicken smooth muscle alpha-actinin molecule. , 1988, The Journal of biological chemistry.

[28]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[29]  A. Pastore,et al.  The C-terminal domain of alpha-spectrin is structurally related to calmodulin. , 1995, European journal of biochemistry.

[30]  S. Jones,et al.  Principles of protein-protein interactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[32]  T. Gibson,et al.  Dystrophin and utrophin: the missing links! , 1995, FEBS letters.

[33]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[34]  K. Taylor,et al.  Projection image of smooth muscle alpha-actinin from two-dimensional crystals formed on positively charged lipid layers. , 1993, Journal of molecular biology.

[35]  A. Mclachlan,et al.  Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. , 1975, Journal of molecular biology.

[36]  M. Saraste,et al.  Does Vav bind to F‐actin through a CH domain? , 1995, FEBS letters.

[37]  M. Kuroda,et al.  Conformational change of skeletal muscle α-actinin induced by salt , 1994 .

[38]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[39]  C. Gregorio,et al.  Muscle assembly: a titanic achievement? , 1999, Current opinion in cell biology.

[40]  O. Carugo,et al.  How many water molecules can be detected by protein crystallography? , 1999, Acta crystallographica. Section D, Biological crystallography.

[41]  L. Kunkel,et al.  Cloning and Characterization of Two Human Skeletal Muscle 0-actinin Genes Located on Chromosomes 1 and 11* , 2022 .

[42]  K. Burridge,et al.  An interaction between alpha-actinin and the beta 1 integrin subunit in vitro , 1990, The Journal of cell biology.

[43]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[44]  G. Kansas,et al.  The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alpha-actinin , 1995, The Journal of cell biology.

[45]  Ann Marie Craig,et al.  Competitive binding of α-actinin and calmodulin to the NMDA receptor , 1997, Nature.

[46]  M. Davison,et al.  α-actinins and the DMD protein contain spectrin-like repeats , 1988, Cell.

[47]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[48]  M. Beckerle,et al.  An interaction between zyxin and alpha-actinin , 1992, The Journal of cell biology.

[49]  B. Jockusch,et al.  Flexibility and fine structure of smooth-muscle alpha-actinin. , 1997, European journal of biochemistry.

[50]  Shin Lin,et al.  Specific interaction of vinculin with α-actinin , 1987 .

[51]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[52]  Y. Ono,et al.  Interaction of PKN with α-Actinin* , 1997, The Journal of Biological Chemistry.

[53]  W. Kuo,et al.  Actinin-associated LIM Protein: Identification of a Domain Interaction between PDZ and Spectrin-like Repeat Motifs , 1997, The Journal of cell biology.

[54]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[55]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[56]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[57]  M. Rief,et al.  Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. , 1999, Journal of molecular biology.

[58]  M. Gautel,et al.  Molecular structure of the sarcomeric Z‐disk: two types of titin interactions lead to an asymmetrical sorting of α‐actinin , 1998, The EMBO journal.

[59]  K. Burridge,et al.  Focal adhesions, contractility, and signaling. , 1996, Annual review of cell and developmental biology.

[60]  M. Beckerle,et al.  Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage , 1986, Nature.