Background modeling methods in video analysis: A review and comparative evaluation

Abstract Foreground detection methods can be applied to efficiently distinguish foreground objects including moving or static objects from background which is very important in the application of video analysis, especially video surveillance. An excellent background model can obtain a good foreground detection results. A lot of background modeling methods had been proposed, but few comprehensive evaluations of them are available. These methods suffer from various challenges such as illumination changes and dynamic background. This paper first analyzed advantages and disadvantages of various background modeling methods in video analysis applications and then compared their performance in terms of quality and the computational cost. The Change detection.Net (CDnet2014) dataset and another video dataset with different environmental conditions (indoor, outdoor, snow) were used to test each method. The experimental results sufficiently demonstrated the strengths and drawbacks of traditional and recently proposed state-of-the-art background modeling methods. This work is helpful for both researchers and engineering practitioners. Codes of background modeling methods evaluated in this paper are available at www.yongxu.org/lunwen.html .

[1]  Lucia Maddalena,et al.  The SOBS algorithm: What are the limits? , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[2]  P. Angelov,et al.  A fast approach to novelty detection in video streams using recursive density estimation , 2008, 2008 4th International IEEE Conference Intelligent Systems.

[3]  David Suter,et al.  Background Subtraction Based on a Robust Consensus Method , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[4]  Manuele Bicego,et al.  Integrated region- and pixel-based approach to background modelling , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[5]  Chun-Rong Huang,et al.  Real-Time Binary Descriptor Based Background Modeling , 2013, 2013 2nd IAPR Asian Conference on Pattern Recognition.

[6]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Pau-Choo Chung,et al.  Online surveillance video synopsis , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[9]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  Thomas Sikora,et al.  Comparison of static background segmentation methods , 2005, Visual Communications and Image Processing.

[11]  Thierry Bouwmans,et al.  Background Subtraction For Visual Surveillance: A Fuzzy Approach , 2012 .

[12]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[13]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[14]  Ferdinand van der Heijden,et al.  Recursive unsupervised learning of finite mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Shao-Yi Chien,et al.  Video Object Segmentation and Tracking Framework With Improved Threshold Decision and Diffusion Distance , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Niloofar Gheissari,et al.  Evaluation of Background Subtraction Methods , 2008, 2008 Digital Image Computing: Techniques and Applications.

[17]  Max Mignotte,et al.  Statistical background subtraction using spatial cues , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[19]  Dar-Shyang Lee,et al.  Effective Gaussian mixture learning for video background subtraction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Tsung-Han Tsai,et al.  Algorithm and Architecture Design of Human–Machine Interaction in Foreground Object Detection With Dynamic Scene , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Antoine Vacavant,et al.  A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos , 2014, Comput. Vis. Image Underst..

[23]  Larry S. Davis,et al.  Background modeling and subtraction by codebook construction , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[24]  Shaogang Gong,et al.  A highly efficient block-based dynamic background model , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[25]  Yi-Ping Hung,et al.  Efficient hierarchical method for background subtraction , 2007, Pattern Recognit..

[26]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[28]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[29]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[30]  Sidney S. Fels,et al.  Evaluation of Background Subtraction Algorithms with Post-Processing , 2008, 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.

[31]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Kwang-Ting Cheng,et al.  Learning a sparse, corner-based representation for time-varying background modelling , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[33]  R.W. Ehrich,et al.  Computer image processing and recognition , 1981, Proceedings of the IEEE.

[34]  Serge Miguet,et al.  Real Time Foreground-Background Segmentation Using a Modified Codebook Model , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[35]  I. Haritaoglu,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .

[36]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[37]  Chun-Rong Huang,et al.  Maximum a Posteriori Probability Estimation for Online Surveillance Video Synopsis , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[38]  Atsushi Shimada,et al.  Non-parametric Background and Shadow Modeling for Object Detection , 2007, ACCV.

[39]  Mircea Nicolescu,et al.  Robust Recursive Learning for Foreground Region Detection in Videos with Quasi-Stationary Backgrounds , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[40]  Monica N. Nicolescu,et al.  Non-parametric statistical background modeling for efficient foreground region detection , 2008, Machine Vision and Applications.

[41]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Rainer Stiefelhagen,et al.  Improving foreground segmentations with probabilistic superpixel Markov random fields , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[43]  K. N. Plataniotis,et al.  Visual-centric surveillance networks and services [Guest Editorial] , 2005, IEEE Signal Process. Mag..

[44]  Bertrand Vachon,et al.  Statistical Background Modeling for Foreground Detection: A Survey , 2010 .

[45]  Wan Mimi Diyana Wan Zaki,et al.  A Qualitative and Quantitative Comparison of Real-time Background Subtraction Algorithms for Video Surveillance Applications ? , 2012 .

[46]  Chun-Rong Huang,et al.  Binary invariant cross color descriptor using galaxy sampling , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[47]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Wei-Yun Yau,et al.  Robust human detection within a highly dynamic aquatic environment in real time , 2006, IEEE Transactions on Image Processing.

[49]  W. Eric L. Grimson,et al.  Trajectory analysis and semantic region modeling using a nonparametric Bayesian model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[52]  Li-Chen Fu,et al.  Region-Level Motion-Based Foreground Segmentation Under a Bayesian Network , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[53]  Marc Van Droogenbroeck,et al.  ViBE: A powerful random technique to estimate the background in video sequences , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[54]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[55]  David Suter,et al.  A consensus-based method for tracking: Modelling background scenario and foreground appearance , 2007, Pattern Recognit..

[56]  Jinhui Tang,et al.  Joint Video Frame Set Division and Low-Rank Decomposition for Background Subtraction , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[57]  Atsushi Shimada,et al.  Dynamic Control of Adaptive Mixture-of-Gaussians Background Model , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[58]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[59]  G. Bebis,et al.  Automatic Statistical Object Detection for Visual Surveillance , 2006, 2006 IEEE Southwest Symposium on Image Analysis and Interpretation.

[60]  Carlo S. Regazzoni,et al.  Classification of Unattended and Stolen Objects in Video-Surveillance System , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[61]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[62]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[63]  Simone Calderara,et al.  A Distributed Outdoor Video Surveillance System for Detection of Abnormal People Trajectories , 2007, 2007 First ACM/IEEE International Conference on Distributed Smart Cameras.

[64]  Marc Van Droogenbroeck,et al.  Background subtraction: Experiments and improvements for ViBe , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[65]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[66]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[67]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[68]  Atsushi Shimada,et al.  Evaluation report of integrated background modeling based on spatio-temporal features , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[69]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  B. Frey,et al.  Transformation-Invariant Clustering Using the EM Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Hélène Laurent,et al.  Review and evaluation of commonly-implemented background subtraction algorithms , 2008, 2008 19th International Conference on Pattern Recognition.

[72]  Chun-Rong Huang,et al.  Binary Descriptor Based Nonparametric Background Modeling for Foreground Extraction by Using Detection Theory , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[73]  Vasile Gui,et al.  A fast algorithm for background tracking in video surveillance, using nonparametric kernel density estimation , 2005 .

[74]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[75]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[76]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[77]  K. Ming Leung,et al.  Learning Vector Quantization , 2017, Encyclopedia of Machine Learning and Data Mining.

[78]  Z. Zivkovic Improved adaptive Gaussian mixture model for background subtraction , 2004, ICPR 2004.

[79]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[80]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[81]  Alan M. McIvor,et al.  Background Subtraction Techniques , 2000 .