Piecewise linear interpolation of noise in finite element approximations of parabolic SPDEs

Efficient simulation of stochastic partial differential equations (SPDE) on general domains requires noise discretization. This paper employs piecewise linear interpolation of noise in a fully discrete finite element approximation of a semilinear stochastic reaction-advection-diffusion equation on a convex polyhedral domain. The Gaussian noise is white in time, spatially correlated, and modeled as a standard cylindrical Wiener process on a reproducing kernel Hilbert space. This paper provides the first rigorous analysis of the resulting noise discretization error for a general spatial covariance kernel. The kernel is assumed to be defined on a larger regular domain, allowing for sampling by the circulant embedding method. The error bound under mild kernel assumptions requires non-trivial techniques like Hilbert--Schmidt bounds on products of finite element interpolants, entropy numbers of fractional Sobolev space embeddings and an error bound for interpolants in fractional Sobolev norms. Examples with kernels encountered in applications are illustrated in numerical simulations using the FEniCS finite element software. Key findings include: noise interpolation does not introduce additional errors for Mat\'ern kernels in $d\ge2$; there exist kernels that yield dominant interpolation errors; and generating noise on a coarser mesh does not always compromise accuracy.

[1]  G. Lord,et al.  The heat modulated infinite dimensional Heston model and its numerical approximation , 2022, ArXiv.

[2]  A. Petersson,et al.  Hilbert–Schmidt regularity of symmetric integral operators on bounded domains with applications to SPDE approximations , 2021, Stochastic Analysis and Applications.

[3]  Jianbo Cui,et al.  Strong and Weak Convergence Rates of a Spatial Approximation for Stochastic Partial Differential Equation with One-sided Lipschitz Coefficient , 2019, SIAM J. Numer. Anal..

[4]  Rae. Z.H. Aliyev,et al.  Interpolation of Spatial Data , 2018, Biomedical Journal of Scientific & Technical Research.

[5]  Frances Y. Kuo,et al.  Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..

[6]  Anders Logg,et al.  Solving PDEs in Python: The FEniCS Tutorial I , 2017 .

[7]  A. Behzadan,et al.  Multiplication in Sobolev spaces, revisited , 2015, Arkiv för Matematik.

[8]  Michèle Thieullen,et al.  Simulation of SPDEs for Excitable Media Using Finite Elements , 2015, J. Sci. Comput..

[9]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[10]  R. Kruse Strong and Weak Approximation of Semilinear Stochastic Evolution Equations , 2013 .

[11]  A. Barth,et al.  Simulation of stochastic partial differential equations using finite element methods , 2012 .

[12]  Antoine Tambue,et al.  Exponential time integrators for stochastic partial differential equations in 3D reservoir simulation , 2012, Computational Geosciences.

[13]  Stig Larsson,et al.  Spatial approximation of stochastic convolutions , 2011, J. Comput. Appl. Math..

[14]  Arnulf Jentzen,et al.  Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise , 2010, 1005.4095.

[15]  Antoine Tambue,et al.  A modified semi-implicit Euler-Maruyama scheme for finite element discretization of SPDEs with additive noise , 2010, Appl. Math. Comput..

[16]  Stig Larsson,et al.  Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise , 2010, Numerical Algorithms.

[17]  Atsushi Yagi,et al.  Abstract Parabolic Evolution Equations and their Applications , 2009 .

[18]  M. Riedle Cylindrical Wiener Processes , 2008, 0802.2261.

[19]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[20]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[21]  J. B. Walsh,et al.  Finite Element Methods for Parabolic Stochastic PDE’s , 2005 .

[22]  Yubin Yan,et al.  Galerkin Finite Element Methods for Stochastic Parabolic Partial Differential Equations , 2005, SIAM J. Numer. Anal..

[23]  Qiang Du,et al.  Numerical Approximation of Some Linear Stochastic Partial Differential Equations Driven by Special Additive Noises , 2002, SIAM J. Numer. Anal..

[24]  Zhimin Zhang,et al.  Finite element and difference approximation of some linear stochastic partial differential equations , 1998 .

[25]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[26]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[27]  H. Triebel,et al.  Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen , 1967 .

[28]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[29]  M. Urner Scattered Data Approximation , 2016 .

[30]  Anders Logg,et al.  Solving PDEs in Python , 2016 .

[31]  Patrick Ciarlet,et al.  Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces , 2013, J. Num. Math..

[32]  M. Fowler,et al.  Function Spaces , 2022 .

[33]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[34]  Susanne C. Brenner,et al.  SOME NONSTANDARD FINITE ELEMENT ESTIMATES WITH APPLICATIONS TO 3D POISSON AND SIGNORINI PROBLEMS , 2001 .

[35]  S. C. Brenner A nonstandard finite element interpolation estimate , 1999 .

[36]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[37]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .