Sodiophilic Au/reduced-graphene-oxide for dendrite free sodium metal anode

[1]  Tingting Xu,et al.  Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries , 2021 .

[2]  Edward Matios,et al.  SnO2 Quantum Dots Enabled Site-Directed Sodium Deposition for Stable Sodium Metal Batteries. , 2020, Nano letters.

[3]  Tingting Xu,et al.  3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode , 2020 .

[4]  Baohua Li,et al.  Sodiophilically Graded Gold Coating on Carbon Skeletons for Highly Stable Sodium Metal Anodes. , 2020, Small.

[5]  Tingting Xu,et al.  Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework , 2020, Ionics.

[6]  Feng Wu,et al.  A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode , 2020, Advanced Functional Materials.

[7]  Xizheng Liu,et al.  A thermodynamically stable quasi-liquid interface for dendrite-free sodium metal anodes , 2020 .

[8]  Yunpeng Jiang,et al.  Sodiophilic Decoration of a Three-Dimensional Conductive Scaffold toward a Stable Na Metal Anode , 2020 .

[9]  Yunhui Huang,et al.  Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes , 2020 .

[10]  Tingting Xu,et al.  Advanced carbon nanostructures for future high performance sodium metal anodes , 2020 .

[11]  H. Yang,et al.  Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. , 2020, Nanoscale.

[12]  Lu Huang,et al.  Synchronous Healing of Li Metal Anode via Asymmetrical Bidirectional Current , 2019, iScience.

[13]  Huisheng Peng,et al.  Sodiophilic interphase mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. , 2019, Angewandte Chemie.

[14]  Feng Wu,et al.  Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode , 2019, Energy Storage Materials.

[15]  Seok Woo Lee,et al.  Enhanced Performance of Electric Double Layer Micro-supercapacitor Based on Novel Carbon Encapsulated Cu Nanowire Network Structure as Electrode. , 2019, ACS applied materials & interfaces.

[16]  S. Choudhury,et al.  On the Reversibility and Fragility of Sodium Metal Electrodes , 2019, Advanced Energy Materials.

[17]  Y. S. Yun,et al.  Anode-Free Sodium Metal Batteries Based on Nanohybrid Core-Shell Templates. , 2019, Small.

[18]  Xin Jian Li,et al.  Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. , 2019, ACS nano.

[19]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[20]  Y. Gong,et al.  Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes , 2019, Science Advances.

[21]  De‐Yin Wu,et al.  Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloy‐Based Sodiophilic Interphase , 2019, Advanced materials.

[22]  Hyun‐Wook Lee,et al.  Nanocrevasse-Rich Carbon Fibers for Stable Lithium and Sodium Metal Anodes. , 2018, Nano letters.

[23]  X. Tao,et al.  Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes , 2018, Advanced Functional Materials.

[24]  Wenwu Wang,et al.  Directional Flow-Aided Sonochemistry Yields Graphene with Tunable Defects to Provide Fundamental Insight on Sodium Metal Plating Behavior. , 2018, ACS nano.

[25]  Xifei Li,et al.  Recent advances in effective protection of sodium metal anode , 2018, Nano Energy.

[26]  Yaxiang Lu,et al.  Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts , 2018, Energy Storage Materials.

[27]  Jiayan Luo,et al.  2D Materials for Lithium/Sodium Metal Anodes , 2018, Advanced Energy Materials.

[28]  Yang Zhao,et al.  Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries , 2018 .

[29]  P. Shen,et al.  Rational Design of Na4Fe3(PO4)2(P2O7) Nanoparticles Embedded in Graphene: Toward Fast Sodium Storage Through the Pseudocapacitive Effect , 2018, ACS Applied Energy Materials.

[30]  Huan Ye,et al.  Nitrogen and Oxygen Co-doped Graphitized Carbon Fibers with Sodiophilic-Rich Sites Guide Uniform Sodium Nucleation for Ultrahigh-Capacity Sodium-Metal Anodes. , 2018, ACS applied materials & interfaces.

[31]  Jia Zhu,et al.  Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes , 2018, Advanced Functional Materials.

[32]  Huaihe Song,et al.  Metal–Organophosphine Framework‐Derived N,P‐Codoped Carbon‐Confined Cu3P Nanopaticles for Superb Na‐Ion Storage , 2018, Advanced Energy Materials.

[33]  Huaihe Song,et al.  2D Zn‐Hexamine Coordination Frameworks and Their Derived N‐Rich Porous Carbon Nanosheets for Ultrafast Sodium Storage , 2018 .

[34]  J. Buriak,et al.  β-SnSb for Sodium Ion Battery Anodes: Phase Transformations Responsible for Enhanced Cycling Stability Revealed by In Situ TEM , 2018, ACS Energy Letters.

[35]  Boyang Liu,et al.  3D Wettable Framework for Dendrite‐Free Alkali Metal Anodes , 2018 .

[36]  W. Weiwei,et al.  A room-temperature sodium metal anode enabled by a sodiophilic layer , 2018, Nano Energy.

[37]  Ya‐Xia Yin,et al.  Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes , 2018, Nano Energy.

[38]  Huan Wang,et al.  A Chemically Engineered Porous Copper Matrix with Cylindrical Core–Shell Skeleton as a Stable Host for Metallic Sodium Anodes , 2018, Advanced Functional Materials.

[39]  Xingzhong Zhao,et al.  Highly Conductive and Robust Three-Dimensional Host with Excellent Alkali Metal Infiltration Boosts Ultrastable Lithium and Sodium Metal Anodes. , 2018, ACS applied materials & interfaces.

[40]  Y. S. Yun,et al.  Sulfur-Doped Carbon Nanotemplates for Sodium Metal Anodes , 2018 .

[41]  Qian Sun,et al.  High Capacity, Dendrite-Free Growth, and Minimum Volume Change Na Metal Anode. , 2018, Small.

[42]  De‐Yin Wu,et al.  Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes , 2018, Nature Communications.

[43]  Chenglong Zhao,et al.  Advanced Na metal anodes , 2018, Journal of Energy Chemistry.

[44]  Huaihe Song,et al.  Tailoring Highly N-Doped Carbon Materials from Hexamine-Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Na-Ion Storage. , 2018, Small.

[45]  Y. S. Yun,et al.  Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes , 2018 .

[46]  Ji‐Guang Zhang,et al.  Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes , 2018 .

[47]  Shubin Yang,et al.  Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes. , 2017, ACS applied materials & interfaces.

[48]  Huan Wang,et al.  Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes. , 2017, Nano letters.

[49]  Quan-hong Yang,et al.  Processable and Moldable Sodium-Metal Anodes. , 2017, Angewandte Chemie.

[50]  Qian Sun,et al.  Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode. , 2017, Nano letters.

[51]  Quan-hong Yang,et al.  Porous Al Current Collector for Dendrite-Free Na Metal Anodes. , 2017, Nano letters.

[52]  Feng Wu,et al.  Microorganism-moulded pomegranate-like Na3V2(PO4)3/C nanocomposite for advanced sodium-ion batteries , 2017 .

[53]  Ji‐Guang Zhang,et al.  Enabling room temperature sodium metal batteries , 2016 .

[54]  Han Yang,et al.  Ice Templated Free‐Standing Hierarchically WS2/CNT‐rGO Aerogel for High‐Performance Rechargeable Lithium and Sodium Ion Batteries , 2016 .

[55]  Jaehoon Kim,et al.  One-pot route to synthesize SnO 2 -Reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries , 2015 .

[56]  Jun Liu,et al.  Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. , 2014, Nano letters.

[57]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[58]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[59]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[60]  W. Luo,et al.  Ultrathin Surface Coating Enables the Stable Sodium Metal Anode , 2017 .