A Projection Algorithm for Non-Monotone Variational Inequalities

We introduce a projection-type algorithm for solving the variational inequality problem for point-to-set operators, and establish its convergence properties. Namely, we assume that the operator of the variational inequality is continuous in the point-to-set sense, i.e., inner- and outer-semicontinuous. Under the assumption that the dual solution set is not empty, we prove that our method converges to a solution of the variational inequality. Instead of the monotonicity assumption, we require the non-emptiness of the solution set of the dual formulation of the variational inequality. We provide numerical experiments illustrating the behaviour of our iterates. Moreover, we compare our new method with a recent similar one.

[1]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[2]  Paul-Emile Maingé,et al.  Convergence of One-Step Projected Gradient Methods for Variational Inequalities , 2016, J. Optim. Theory Appl..

[3]  Joydeep Dutta,et al.  Inexact Proximal Point Methods for Variational Inequality Problems , 2010, SIAM J. Optim..

[4]  Jacek Gondzio,et al.  A New Unblocking Technique to Warmstart Interior Point Methods Based on Sensitivity Analysis , 2008, SIAM J. Optim..

[5]  R. Díaz Millán,et al.  A variant of forward-backward splitting method for the sum of two monotone operators with a new search strategy , 2015 .

[6]  R. Díaz Millán Two algorithms for solving systems of inclusion problems , 2018 .

[7]  João X. da Cruz Neto,et al.  Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints , 2012, J. Optim. Theory Appl..

[8]  R. Rockafellar Local boundedness of nonlinear, monotone operators. , 1969 .

[9]  Changjie Fang,et al.  A subgradient extragradient algorithm for solving multi-valued variational inequality , 2014, Appl. Math. Comput..

[10]  Siegfried Schaible,et al.  Quasimonotone variational inequalities in Banach spaces , 1996 .

[11]  Miguel Sama,et al.  Optimal control of multivalued quasi variational inequalities , 2012 .

[12]  Naihua Xiu,et al.  Modified Extragradient Method for Variational Inequalities and Verification of Solution Existence , 2003 .

[13]  R. Díaz Millán,et al.  A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces , 2013, J. Glob. Optim..

[14]  Pham Ky Anh,et al.  Modified hybrid projection methods for finding common solutions to variational inequality problems , 2017, Comput. Optim. Appl..

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[17]  Phan Tu Vuong,et al.  A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces , 2016, J. Glob. Optim..

[18]  Hung M. Phan,et al.  Conditional extragradient algorithms for variational inequalities , 2014 .

[19]  Renato D. C. Monteiro,et al.  An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and Its Implications to Second-Order Methods , 2013, SIAM J. Optim..

[20]  Hung M. Phan,et al.  Conditional extragradient algorithms for solving variational inequalities , 2014, 1411.4338.

[21]  Jen-Chih Yao,et al.  Approximate proximal algorithms for generalized variational inequalities with paramonotonicity and pseudomonotonicity , 2008, Comput. Math. Appl..

[22]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[23]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[24]  J. Y. Bello Cruz,et al.  A variant of forward-backward splitting method for the sum of two monotone operators with a new search strategy , 2015 .

[25]  Nils Langenberg An Interior Proximal Method for a Class of Quasimonotone Variational Inequalities , 2012, J. Optim. Theory Appl..

[26]  Li Xu,et al.  Finite Convergence of the Proximal Point Algorithm for Variational Inequality Problems , 2013 .

[27]  P. Kumam,et al.  Computational of generalized projection method for maximal monotone operators and a countable family of relatively quasi-nonexpansive mappings , 2015 .

[28]  R. Díaz Millán,et al.  Two algorithms for solving systems of inclusion problems , 2016, Numerical Algorithms.

[29]  I. Konnov A Class of Combined Iterative Methods for Solving Variational Inequalities , 1997 .

[30]  Changjie Fang,et al.  A Projection-Type Method for Multivalued Variational Inequality , 2013 .

[31]  Igor V. Konnov,et al.  A combined relaxation method for variational inequalities with nonlinear constraints , 1998, Math. Program..

[32]  R. Burachik,et al.  An inexact interior point proximal method for the variational inequality problem , 2009 .

[33]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[34]  J. Y. Bello Cruz,et al.  A Direct Splitting Method for Nonsmooth Variational Inequalities , 2014 .

[35]  R. Díaz Millán,et al.  A Direct Splitting Method for Nonsmooth Variational Inequalities , 2014, J. Optim. Theory Appl..

[36]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[37]  Mau-Hsiang Shih,et al.  Browder-Hartman-Stampacchia variational inequalities for multi-valued monotone operators☆ , 1988 .

[38]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[39]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[40]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[41]  Do Sang Kim,et al.  Projection algorithms for solving nonmonotone equilibrium problems in Hilbert space , 2016, J. Comput. Appl. Math..

[42]  Regina Sandra Burachik,et al.  A Proximal Point Method for the Variational Inequality Problem in Banach Spaces , 2000, SIAM J. Control. Optim..

[43]  Duvsan Repovvs,et al.  Continuous Selections of Multivalued Mappings , 1998, 1401.2257.

[44]  Yiran He,et al.  A double projection method for solving variational inequalities without monotonicity , 2014, Computational Optimization and Applications.

[45]  Yair Censor,et al.  Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space , 2011, Optim. Methods Softw..

[46]  Nan-Jing Huang,et al.  A Projection-Proximal Point Algorithm for Solving Generalized Variational Inequalities , 2011, J. Optim. Theory Appl..

[47]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[48]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .