Visual Deprivation Alters Development of Synaptic Function in Inner Retina after Eye Opening

[1]  L. Chalupa,et al.  Unique Functional Properties of On and Off Pathways in the Developing Mammalian Retina , 2001, The Journal of Neuroscience.

[2]  N. Daw,et al.  Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex , 2001, Nature Neuroscience.

[3]  M P Stryker,et al.  Neurotrophin-4/5 Alters Responses and Blocks the Effect of Monocular Deprivation in Cat Visual Cortex during the Critical Period , 2000, The Journal of Neuroscience.

[4]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[5]  D. Pow,et al.  Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina , 2000, Neuroscience Letters.

[6]  D. Copenhagen,et al.  Automatic detection, characterization, and discrimination of kinetically distinct spontaneous synaptic events , 1999, Journal of Neuroscience Methods.

[7]  Naoum P. Issa,et al.  The Critical Period for Ocular Dominance Plasticity in the Ferret’s Visual Cortex , 1999, The Journal of Neuroscience.

[8]  O. Prange,et al.  Correlation of Miniature Synaptic Activity and Evoked Release Probability in Cultures of Cortical Neurons , 1999, The Journal of Neuroscience.

[9]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[10]  R. Macdonald,et al.  Postnatal development of hippocampal dentate granule cell gamma-aminobutyric acidA receptor pharmacological properties. , 1999, Molecular pharmacology.

[11]  R. Wong,et al.  Retinal waves and visual system development. , 1999, Annual review of neuroscience.

[12]  E. S. Guire,et al.  Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. , 1999, Journal of neurophysiology.

[13]  M. Stryker,et al.  Local GABA circuit control of experience-dependent plasticity in developing visual cortex. , 1998, Science.

[14]  L. Wachtmeister,et al.  Oscillatory potentials in the retina: what do they reveal , 1998, Progress in Retinal and Eye Research.

[15]  D. Copenhagen,et al.  Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells. , 1998, Journal of neurophysiology.

[16]  M. Tachibana,et al.  Excitatory Synaptic Transmission in the Inner Retina: Paired Recordings of Bipolar Cells and Neurons of the Ganglion Cell Layer , 1998, The Journal of Neuroscience.

[17]  G. Y. Wang,et al.  Development of intrinsic membrane properties in mammalian retinal ganglion cells. , 1998, Seminars in cell & developmental biology.

[18]  L. Ziskind-Conhaim,et al.  Development of spontaneous synaptic transmission in the rat spinal cord. , 1998, Journal of neurophysiology.

[19]  C. Goodman,et al.  Synapse-specific control of synaptic efficacy at the terminals of a single neuron , 1998, Nature.

[20]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[21]  D. Protti,et al.  GABAergic and glycinergic IPSCs in Ganglion Cells of Rat Retinal Slices , 1997, The Journal of Neuroscience.

[22]  I. Soltesz,et al.  Slow Kinetics of Miniature IPSCs during Early Postnatal Development in Granule Cells of the Dentate Gyrus , 1997, The Journal of Neuroscience.

[23]  H. Wässle,et al.  Synaptogenesis in the rat retina: subcellular localization of glycine receptors, GABAA receptors, and the anchoring protein gephyrin , 1997, The Journal of comparative neurology.

[24]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[25]  N. Grzywacz,et al.  Influence of spontaneous activity and visual experience on developing retinal receptive fields , 1996, Current Biology.

[26]  M. Bear,et al.  Experience-dependent modification of synaptic plasticity in visual cortex , 1996, Nature.

[27]  M P Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, The Journal of Neuroscience.

[28]  T. Fujikado,et al.  ERG of form deprivation myopia and drug induced ametropia in chicks. , 1996, Current eye research.

[29]  D. Copenhagen,et al.  Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. , 1995, The Journal of physiology.

[30]  H. Luhmann,et al.  Development of excitatory and inhibitory postsynaptic potentials in the rat neocortex. , 1995, Perspectives on developmental neurobiology.

[31]  I. Thompson,et al.  Targeting and activity-related dendritic modification in mammalian retinal ganglion cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  B. Rörig,et al.  Glutamatergic and GABAergic synaptic currents in ganglion cells from isolated retinae of pigmented rats during postnatal development. , 1993, Brain research. Developmental brain research.

[33]  J. S. Tootle,et al.  Early postnatal development of visual function in ganglion cells of the cat retina. , 1993, Journal of neurophysiology.

[34]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[35]  L. Wachtmeister,et al.  The postnatal development of the oscillatory potentials of the electroretinogram II. Photopic characteristics , 1991, Acta ophthalmologica.

[36]  A. Kriegstein,et al.  Spontaneous action potential activity and synaptic currents in the embryonic turtle cerebral cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  K. Fox,et al.  Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex , 1991, Nature.

[38]  G. Mower,et al.  The effect of dark rearing on the time course of the critical period in cat visual cortex. , 1991, Brain research. Developmental brain research.

[39]  L. Wachtmeister,et al.  The postnatal development of the oscillatory potentials of the electroretinogram: I. Basic characteristics , 1990, Acta ophthalmologica.

[40]  J. A. Baro,et al.  Electroretinograms and visual evoked potentials in long-term monocularly deprived cats. , 1990, Investigative ophthalmology & visual science.

[41]  M. Slaughter,et al.  B-wave of the electroretinogram. A reflection of ON bipolar cell activity , 1989, The Journal of general physiology.

[42]  H. Wässle Dendritic maturation of retinal ganglion cells , 1988, Trends in Neurosciences.

[43]  P. Madtes,et al.  GABA — Its role and development in retina , 1987 .

[44]  Frank H. Duffy,et al.  Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex , 1981, Brain Research.

[45]  J. Greiner,et al.  Histogenesis of the ferret retina. , 1981, Experimental eye research.

[46]  D E Mitchell,et al.  Prolonged sensitivity to monocular deprivation in dark-reared cats. , 1980, Journal of neurophysiology.

[47]  L. Fisher Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice. , 1979, Journal of embryology and experimental morphology.

[48]  L. Fisher Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina , 1979, The Journal of comparative neurology.

[49]  S. Sherman,et al.  Retina X- and Y-cells in monocularly lid-sutured cats: normality of spatial and temporal properties , 1979, Brain Research.

[50]  M. Dubin,et al.  Kitten ganglion cells: dendritic field size at 3 weeks of age and correlation with receptive field size. , 1978, Investigative ophthalmology & visual science.

[51]  Rusoff Ac,et al.  Development of receptive-field properties of retinal ganglion cells in kittens. , 1977 .

[52]  M. Dubin,et al.  Development of receptive-field properties of retinal ganglion cells in kittens. , 1977, Journal of neurophysiology.

[53]  A. Hendrickson,et al.  Morphology of the retina and dorsal lateral geniculate nucleus in dark-reared monkeys (Macaca nemestrina) , 1976, Vision Research.

[54]  J. Movshon Reversal of the physiological effects of monocular deprivation in the kitten's visual cortex. , 1976, The Journal of physiology.

[55]  R. Dacheux,et al.  Developmental characteristics of receptive organization in the isolated retina-eyecup of the rabbit , 1975, Brain Research.

[56]  J. Stone,et al.  Physiological normality of the retinal in visually deprived cats. , 1973, Brain research.

[57]  P. Glow,et al.  Increase in number of synapses in the inner plexiform layer of light deprived rat retinae: Quantitative electron microscopy , 1971, The Journal of comparative neurology.

[58]  N. Bonaventure,et al.  [Maturation of the ERG and visual evoked potentials in the rabbit reared in natural environmental lighting conditions]. , 1967, Comptes rendus des seances de la Societe de biologie et de ses filiales.

[59]  D. Hubel,et al.  EFFECTS OF VISUAL DEPRIVATION ON MORPHOLOGY AND PHYSIOLOGY OF CELLS IN THE CATS LATERAL GENICULATE BODY. , 1963, Journal of neurophysiology.