Lyapunov Spectrum of Asymptotically Sub-additive Potentials

For general asymptotically sub-additive potentials (resp. asymptotically additive potentials) on general topological dynamical systems, we establish some variational relations between the topological entropy of the level sets of Lyapunov exponents, measure-theoretic entropies and topological pressures in this general situation. Most of our results are obtained without the assumption of the existence of unique equilibrium measures or the differentiability of pressure functions. Some examples are constructed to illustrate the irregularity and the complexity of multifractal behaviors in the sub-additive case and in the case that the entropy map is not upper-semi continuous.

[1]  De-Jun Feng Lyapunov exponents for products of matrices and multifractal analysis. Part I: Positive matrices , 2003 .

[2]  S. Smirnov,et al.  On “Thermodynamics” of Rational Maps I. Negative Spectrum , 2000 .

[3]  The pressure function for products of non-negative matrices , 2002, math/0205028.

[4]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[5]  T. Küpper,et al.  Topological entropy for divergence points , 2005, Ergodic Theory and Dynamical Systems.

[6]  G. Michon,et al.  On the multifractal analysis of measures , 1992 .

[7]  K. Lau,et al.  Ergodic Limits on the Conformal Repellers , 2002 .

[8]  Phase transitions for the multifractal analysis of self-similar measures , 2006, math/0604035.

[9]  De-Jun Feng,et al.  Multifractal analysis of weak Gibbs measures and phase transition—application to some Bernoulli convolutions , 2003, Ergodic Theory and Dynamical Systems.

[10]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[11]  M. Kesseböhmer Large deviation for weak Gibbs measures and multifractal spectra , 2001 .

[12]  L. Barreira Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures , 2006 .

[13]  M. Misiurewicz Topological conditional entropy , 1976 .

[14]  David Ruelle,et al.  Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics , 1978 .

[15]  S. Smirnov,et al.  On “Thermodynamics” of Rational MapsI.¶Negative Spectrum , 2000 .

[16]  R. Bowen Entropy-expansive maps , 1972 .

[17]  A. Käenmäki On natural invariant measures on generalised iterated function systems , 2017 .

[18]  K. Falconer A subadditive thermodynamic formalism for mixing repellers , 1988 .

[19]  The variational principle for products of non-negative matrices , 2004 .

[20]  Y. Pesin,et al.  Dimension theory in dynamical systems , 1997 .

[21]  A. Fan,et al.  Recurrence, Dimension and Entropy , 2001 .

[22]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[23]  G. Keller Equilibrium States in Ergodic Theory , 1998 .

[24]  F. Fer,et al.  Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics : Vol. 5. by David Ruelle, Addison Wesley, Reading, MA, 1978, $ 21.50 , 1980 .

[25]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[26]  T. Dinh,et al.  On thermodynamics of rational maps on the Riemann sphere , 2006, Ergodic Theory and Dynamical Systems.

[27]  L. Olsen Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages , 2003 .

[28]  Y. Pesin DIMENSION THEORY IN DYNAMICAL SYSTEMS: CONTEMPORARY VIEWS AND APPLICATIONS By YAKOV B. PESIN Chicago Lectures in Mathematics, University of Chicago Press, 312 pp. Price: hardback $56, paperback $19.95. ISBN 0 226 66222 5 , 1998, Ergodic Theory and Dynamical Systems.

[29]  Luis Barreira,et al.  Dimension and Recurrence in Hyperbolic Dynamics , 2008 .

[30]  Anna Mummert The thermodynamic formalism for almost-additive sequences , 2006 .

[31]  De-Jun Feng,et al.  Multifractal analysis for disintegrations of Gibbs measures and conditional Birkhoff averages , 2009, Ergodic Theory and Dynamical Systems.

[32]  J. Peyriére,et al.  Generic points in systems of specification and Banach valued Birkhoff ergodic average , 2008, 0802.3434.

[33]  P. Walters Introduction to Ergodic Theory , 1977 .

[34]  Universitd Paris-sud INTRINSIC ERGODICITY OF SMOOTH INTERVAL MAPS , 1997 .

[35]  L. Barreira A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems , 1996, Ergodic Theory and Dynamical Systems.

[36]  Ai-Hua Fan,et al.  On the Distribution of Long-Term Time Averages on Symbolic Space , 2000 .

[37]  L. Barreira,et al.  On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. , 1997, Chaos.

[38]  K. Falconer,et al.  Continuity of Subadditive Pressure for Self-Affine Sets , 2009 .

[39]  R. Bowen TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS , 1973 .

[40]  L. Barreira,et al.  Higher-dimensional multifractal analysis , 2002 .

[41]  Wolfgang Krieger On unique ergodicity , 1972 .

[42]  J. Barral,et al.  Multifractal analysis of Birkhoff averages on ‘self-affine’ symbolic spaces , 2008, 0802.0520.

[43]  J. Barral,et al.  Gibbs measures on self-affine Sierpiński carpets and their singularity spectrum , 2007, Ergodic Theory and Dynamical Systems.

[44]  Eric Olivier Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for g-measures , 1999 .

[45]  F. Takens,et al.  On the variational principle for the topological entropy of certain non-compact sets , 2003, Ergodic Theory and Dynamical Systems.

[46]  Y. Pesin Dimension Theory in Dynamical Systems: Contemporary Views and Applications , 1997 .

[47]  L. Barreira,et al.  Multifractal Analysis for Lyapunov Exponents on Nonconformal Repellers , 2006 .

[48]  W. Sullivan,et al.  On the topological entropy of saturated sets , 2007, Ergodic Theory and Dynamical Systems.

[49]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[50]  Luis Barreira,et al.  Sets of “Non-typical” points have full topological entropy and full Hausdorff dimension , 2000 .

[51]  M. Kesseböhmer,et al.  A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups , 2004, Ergodic Theory and Dynamical Systems.

[52]  Wen Huang,et al.  The thermodynamic formalism for sub-additive potentials , 2007 .