Updating preconditioners for modified least squares problems

In this paper, we analyze how to update incomplete Cholesky preconditioners to solve least squares problems using iterative methods when the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Our proposed method computes a low-rank update of the preconditioner using a bordering method which is inexpensive compared with the cost of computing a new preconditioner. Moreover, the numerical experiments presented show that this strategy gives, in many cases, a better preconditioner than other choices, including the computation of a new preconditioner from scratch or reusing an existing one.

[1]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[2]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[3]  Alex Pothen,et al.  Computing the block triangular form of a sparse matrix , 1990, TOMS.

[4]  Michele Benzi,et al.  Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..

[5]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[6]  Juana Cerdán,et al.  Low-rank updates of balanced incomplete factorization preconditioners , 2017, Numerical Algorithms.

[7]  Nicholas J. Dingle,et al.  Implementing QR factorization updating algorithms on GPUs , 2014, Parallel Comput..

[8]  Miroslav Tuma,et al.  Preconditioned Iterative Methods for Solving Linear Least Squares Problems , 2014, SIAM J. Sci. Comput..

[9]  Timothy A. Davis,et al.  Modifying a Sparse Cholesky Factorization , 1999, SIAM J. Matrix Anal. Appl..

[10]  Timothy A. Davis,et al.  Row Modifications of a Sparse Cholesky Factorization , 2005, SIAM J. Matrix Anal. Appl..

[11]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[12]  S. Alexander,et al.  Analysis of a recursive least squares hyperbolic rotation algorithm for signal processing , 1988 .

[13]  Oscar Olsson,et al.  Using the QR Factorization to swiftly update least squares problems , 2014 .

[14]  Timothy A. Davis,et al.  Multiple-Rank Modifications of a Sparse Cholesky Factorization , 2000, SIAM J. Matrix Anal. Appl..

[15]  Sven Hammarling,et al.  Updating the QR factorization and the least squares problem , 2008 .