Polarimetric Decomposition Over Glacier Ice Using Long-Wavelength Airborne PolSAR

In recent years, there has been increased interest in using synthetic aperture radar (SAR) to study and monitor glaciers and ice sheets for glaciological and climate change research. However, due to the medium's complexity, SAR backscattering from ice remains poorly understood, including the relative importance of scattering from surface and volume layers and also dependences on frequency and glacier zone. Extreme weather conditions can result in quickly changing surface conditions influencing backscatter signatures while leaving the underlying volume of interest unchanged. Surface and volume components must thus be separated in order to infer information regarding the properties of the ice volume. This paper describes a three-component scattering model to decompose polarimetric SAR (PolSAR) images of glacier ice. Total backscatter is modeled as the incoherent summation of surface, volume, and sastrugi (wind-induced feature) components. The proposed model adapts and extends the Freeman and Durden decomposition for an ice volume scenario in which the volume is a dielectric medium. Forms of the model for both random and oriented volumes are considered, and a new oriented sastrugi component is introduced which is able to explain backscatter behavior between different winter scenes. Validation is performed with airborne PolSAR data at L- and P-band collected using the E-SAR system of the German Aerospace Center over the Austfonna ice cap in Svalbard, Norway, as part of the ICESAR campaign.

[1]  Fuk K. Li,et al.  Symmetry properties in polarimetric remote sensing , 1992 .

[2]  Helmut Rott,et al.  Multifrequency and polarimetric SAR observations on alpine glaciers , 1993 .

[3]  Jiancheng Shi,et al.  Snow mapping in alpine regions with synthetic aperture radar , 1994, IEEE Trans. Geosci. Remote. Sens..

[4]  E. Weber Hoen,et al.  A correlation-based approach to modeling interferometric radar observations of the Greenland ice sheet , 2001 .

[5]  S. Cloude Polarisation: Applications in Remote Sensing , 2009 .

[6]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  M. Neumann,et al.  Recent Advances in the Derivation of POL-inSAR Statistics: Study and Applications , 2008 .

[9]  Laurent Ferro-Famil,et al.  Remote sensing of vegetation using multi-baseline polarimetric SAR interferometry (theoretical modeling and physical parameter retrieval) , 2009 .

[10]  Juan M. Lopez-Sanchez,et al.  Wide-band polarimetric radar inversion studies for vegetation layers , 1999, IEEE Trans. Geosci. Remote. Sens..

[11]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[12]  Shuji Fujita,et al.  Relation between ice sheet internal radio-echo reflections and ice fabric at Mizuho Station, Antarctica , 1993 .

[13]  Larry Wilen,et al.  Effects of Birefringence Within Ice Sheets on Obliquely Propagating Radio Waves , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Duane O. Muhleman,et al.  Circular‐polarization radar properties of high‐altitude ice: Western Kunlun Shan and central Andes , 1999 .

[15]  C. Swift,et al.  Microwave remote sensing , 1980, IEEE Antennas and Propagation Society Newsletter.

[16]  Robert Bindschadler,et al.  Tracking subpixel-scale sastrugi with Advanced Land Imager , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  Christian A. Zorman,et al.  The confluence zone of the intense katabatic winds at Terra Nova Bay, Antarctica, as derived from airborne sastrugi surveys and mesoscale numerical modeling , 1990 .

[18]  Christian Mätzler,et al.  Applications of the interaction of microwaves with the natural snow cover , 1987 .

[19]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  Helmut Rott,et al.  Seasonal and short-term variability of multifrequency, polarimetric radar backscatter of Alpine terrain from SIR-C/X-SAR and AIRSAR data , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Irena Hajnsek,et al.  Multi-frequency PolInSAR signatures of a subpolar glacier , 2007 .

[22]  G. Sinclair,et al.  The Transmission and Reception of Elliptically Polarized Waves , 1950, Proceedings of the IRE.

[23]  Eric Rignot,et al.  Backscatter model for the unusual radar properties of the Greenland Ice Sheet , 1995 .

[24]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[25]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[26]  Irena Hajnsek,et al.  Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Takeshi Matsuoka,et al.  Precise measurement of dielectric anisotropy in ice Ih at 39 GHz , 1997 .

[28]  Irena Hajnsek,et al.  Estimation of Glacier Ice Extinction Using Long-Wavelength Airborne Pol-InSAR , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Takeshi Matsuoka,et al.  A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets , 2000 .

[30]  Shane Cloude,et al.  The structure of oriented vegetation from polarimetric interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[31]  Howard A. Zebker,et al.  Estimating Snow Accumulation From InSAR Correlation Observations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[33]  E. Weber Hoen,et al.  Penetration depths inferred from interferometric volume decorrelation observed over the Greenland Ice Sheet , 2000, IEEE Trans. Geosci. Remote. Sens..

[34]  Alexander B. Kostinski,et al.  On foundations of radar polarimetry , 1986 .

[35]  Kenneth C. Jezek,et al.  Dielectric permittivity and scattering measurements of Greenland firn at 26.5-40 GHz , 1994, IEEE Trans. Geosci. Remote. Sens..

[36]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[38]  Hiroyoshi Yamada,et al.  POLSAR Image Analysis of Wetlands Using a Modified Four-Component Scattering Power Decomposition , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[39]  K. Jezek,et al.  Unusual Radar Echoes from the Greenland Ice Sheet , 1993, Science.

[40]  Gerhard Krieger,et al.  TANDEM-L: MONITORING THE EARTH'S DYNAMICS WITH INSAR AND POL-INSAR , 2009 .

[41]  F. Remy,et al.  Observations of the Antarctic ice sheet with the Seasat scatterometer: relation to katabatic-wind intensity and direction , 1993 .

[42]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .