Modal-set estimation with an application to clustering
暂无分享,去创建一个
[1] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[2] H. Chernoff. Estimation of the mode , 1964 .
[3] J. Carmichael,et al. FINDING NATURAL CLUSTERS , 1968 .
[4] Larry D. Hostetler,et al. The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.
[5] L. Devroye. Recursive estimation of the mode of a multivariate density , 1979 .
[6] W. Eddy. Optimum Kernel Estimators of the Mode , 1980 .
[7] J. Hartigan. Consistency of Single Linkage for High-Density Clusters , 1981 .
[8] L. Hubert,et al. Comparing partitions , 1985 .
[9] Yizong Cheng,et al. Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[10] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[11] Paul E. Green,et al. K-modes Clustering , 2001, J. Classif..
[12] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[13] G. Biau,et al. On the asymptotic properties of a simple estimate of the Mode , 2004 .
[14] Surajit Ray,et al. A Nonparametric Statistical Approach to Clustering via Mode Identification , 2007, J. Mach. Learn. Res..
[15] P. Rigollet,et al. Fast rates for plug-in estimators of density level sets , 2008 .
[16] Robert D. Nowak,et al. Adaptive Hausdorff Estimation of Density Level Sets , 2009, COLT.
[17] Ulrike von Luxburg,et al. Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters , 2009, Theoretical Computer Science.
[18] A. Rinaldo,et al. Generalized density clustering , 2009, 0907.3454.
[19] Sanjoy Dasgupta,et al. Rates of convergence for the cluster tree , 2010, NIPS.
[20] James Bailey,et al. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..
[21] W. Stuetzle,et al. A Generalized Single Linkage Method for Estimating the Cluster Tree of a Density , 2010 .
[22] Ashutosh Kumar Singh,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .
[23] Ingo Steinwart,et al. Adaptive Density Level Set Clustering , 2011, COLT.
[24] Ulrike von Luxburg,et al. Pruning nearest neighbor cluster trees , 2011, ICML.
[25] Deniz Erdogmus,et al. Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..
[26] Ingo Steinwart,et al. Consistency and Rates for Clustering with DBSCAN , 2012, AISTATS.
[27] Larry A. Wasserman,et al. Nonparametric Ridge Estimation , 2012, ArXiv.
[28] Rebecca Nugent,et al. Stability of density-based clustering , 2010, J. Mach. Learn. Res..
[29] Sivaraman Balakrishnan,et al. Minimax rates for homology inference , 2011, AISTATS.
[30] Leonidas J. Guibas,et al. Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.
[31] Sivaraman Balakrishnan,et al. Cluster Trees on Manifolds , 2013, NIPS.
[32] Larry A. Wasserman,et al. Non‐parametric inference for density modes , 2013, ArXiv.
[33] L. Wasserman,et al. A Comprehensive Approach to Mode Clustering , 2014, 1406.1780.
[34] L. Wasserman,et al. Feature Selection For High-Dimensional Clustering , 2014, 1406.2240.
[35] Sanjoy Dasgupta,et al. Optimal rates for k-NN density and mode estimation , 2014, NIPS.
[36] Ulrike von Luxburg,et al. Consistent Procedures for Cluster Tree Estimation and Pruning , 2014, IEEE Transactions on Information Theory.
[37] Mikhail Belkin,et al. Beyond Hartigan Consistency: Merge Distortion Metric for Hierarchical Clustering , 2015, COLT.
[38] L. Wasserman,et al. Statistical Inference using the Morse-Smale Complex , 2015, 1506.08826.
[39] David Mason,et al. On the Estimation of the Gradient Lines of a Density and the Consistency of the Mean-Shift Algorithm , 2016, J. Mach. Learn. Res..
[40] Frédéric Chazal,et al. Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..
[41] Vincent Kanade,et al. Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.