New Convolutional Codes Derived from Algebraic Geometry Codes

In this paper, we construct new families of convolutional codes. Such codes are obtained by means of algebraic geometry codes. Additionally, more families of convolutional codes are constructed by means of puncturing, extending, expanding and by the direct product code construction applied to algebraic geometry codes. The parameters of the new convolutional codes are better than or comparable to the ones available in literature. In particular, a family of almost near MDS codes is presented.

[1]  José Ignacio Iglesias Curto,et al.  Convolutional Goppa codes defined on fibrations , 2012, Applicable Algebra in Engineering, Communication and Computing.

[2]  Giuliano G. La Guardia Nonbinary convolutional codes derived from group character codes , 2013, Discret. Math..

[3]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[4]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[5]  Giuliano G. La Guardia On optimal constacyclic codes , 2013, ArXiv.

[6]  Giuliano G. La Guardia,et al.  On Classical and Quantum MDS-Convolutional BCH Codes , 2012, IEEE Transactions on Information Theory.

[7]  Henning Stichtenoth,et al.  Constructing codes from algebraic curves , 1999, IEEE Trans. Inf. Theory.

[8]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[9]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[10]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[11]  Giuliano G. La Guardia,et al.  On Negacyclic MDS-Convolutional Codes , 2013, ArXiv.

[12]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[13]  Ruud Pellikaan,et al.  Which linear codes are algebraic-geometric? , 1991, IEEE Trans. Inf. Theory.

[14]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[15]  Lingfei Jin Quantum Stabilizer Codes From Maximal Curves , 2014, IEEE Transactions on Information Theory.

[16]  Lin-nan Lee,et al.  Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[17]  Heide Gluesing-Luerssen,et al.  A matrix ring description for cyclic convolutional codes , 2008, Adv. Math. Commun..

[18]  M. Tsfasman,et al.  Algebraic Geometric Codes: Basic Notions , 2007 .

[19]  J. M. Muñoz Porras,et al.  Convolutional Codes of Goppa Type , 2003, Applicable Algebra in Engineering, Communication and Computing.

[20]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[21]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[22]  Chaoping Xing,et al.  Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes , 2012, IEEE Transactions on Information Theory.

[23]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional Codes Derived From Reed-Solomon and Reed-Muller Codes , 2007, ArXiv.

[24]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional BCH Codes , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).

[25]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[26]  H. Stichtenoth Self-dual Goppa codes , 1988 .

[27]  Joachim Rosenthal,et al.  Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..

[28]  Heide Gluesing-Luerssen,et al.  Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .

[29]  Carlos Munuera,et al.  Quantum error-correcting codes from algebraic geometry codes of Castle type , 2016, Quantum Inf. Process..