暂无分享,去创建一个
Francisco Marcos de Assis | Giuliano G. La Guardia | Francisco Revson F. Pereira | G. L. Guardia | F. M. Assis | F. Pereira
[1] José Ignacio Iglesias Curto,et al. Convolutional Goppa codes defined on fibrations , 2012, Applicable Algebra in Engineering, Communication and Computing.
[2] Giuliano G. La Guardia. Nonbinary convolutional codes derived from group character codes , 2013, Discret. Math..
[3] Chaoping Xing,et al. Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.
[4] Joachim Rosenthal,et al. Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.
[5] Giuliano G. La Guardia. On optimal constacyclic codes , 2013, ArXiv.
[6] Giuliano G. La Guardia,et al. On Classical and Quantum MDS-Convolutional BCH Codes , 2012, IEEE Transactions on Information Theory.
[7] Henning Stichtenoth,et al. Constructing codes from algebraic curves , 1999, IEEE Trans. Inf. Theory.
[8] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[9] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[10] Rolf Johannesson,et al. Fundamentals of Convolutional Coding , 1999 .
[11] Giuliano G. La Guardia,et al. On Negacyclic MDS-Convolutional Codes , 2013, ArXiv.
[12] Philippe Piret,et al. Convolutional Codes: An Algebraic Approach , 1988 .
[13] Ruud Pellikaan,et al. Which linear codes are algebraic-geometric? , 1991, IEEE Trans. Inf. Theory.
[14] G. David Forney,et al. Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.
[15] Lingfei Jin. Quantum Stabilizer Codes From Maximal Curves , 2014, IEEE Transactions on Information Theory.
[16] Lin-nan Lee,et al. Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.
[17] Heide Gluesing-Luerssen,et al. A matrix ring description for cyclic convolutional codes , 2008, Adv. Math. Commun..
[18] M. Tsfasman,et al. Algebraic Geometric Codes: Basic Notions , 2007 .
[19] J. M. Muñoz Porras,et al. Convolutional Codes of Goppa Type , 2003, Applicable Algebra in Engineering, Communication and Computing.
[20] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[21] V. D. Goppa. Codes on Algebraic Curves , 1981 .
[22] Chaoping Xing,et al. Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes , 2012, IEEE Transactions on Information Theory.
[23] Pradeep Kiran Sarvepalli,et al. Quantum Convolutional Codes Derived From Reed-Solomon and Reed-Muller Codes , 2007, ArXiv.
[24] Pradeep Kiran Sarvepalli,et al. Quantum Convolutional BCH Codes , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).
[25] Joachim Rosenthal,et al. Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.
[26] H. Stichtenoth. Self-dual Goppa codes , 1988 .
[27] Joachim Rosenthal,et al. Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..
[28] Heide Gluesing-Luerssen,et al. Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .
[29] Carlos Munuera,et al. Quantum error-correcting codes from algebraic geometry codes of Castle type , 2016, Quantum Inf. Process..