A Meshless Cohesive Segments Method for Crack Initiation and Propagation in Composites

A modeling method aimed at eliminating the need of explicit crack representation in bi-dimensional structures is presented for the simulation of the initiation and subsequent propagation within composite materials. This is achieved by combining a meshless method with a physical stress–displacement based criterion known as Cohesive Model. This model consents to apply a penalty-based approach to delamination modeling where a variable penalty factor along the crack segment allows to loosen or tight the two parts according to their relative displacements. Results are showed for classical single mode loading benchmark cases and compared to experimental results taken from the literature.

[1]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[2]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[3]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[4]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[5]  William H. Press,et al.  Numerical recipes , 1990 .

[6]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[7]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[8]  Mark A Fleming,et al.  Smoothing and accelerated computations in the element free Galerkin method , 1996 .

[9]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[10]  F. L. Matthews,et al.  Predicting Progressive Delamination of Composite Material Specimens via Interface Elements , 1999 .

[11]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[12]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[13]  Ted Belytschko,et al.  Discontinuous enrichment in finite elements with a partition of unity method , 2000 .

[14]  Huajian Gao,et al.  Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods , 2000 .

[15]  M. D. Moura,et al.  Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination , 2001 .

[16]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[17]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[18]  P. Camanho,et al.  Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials , 2002 .

[19]  R. de Borst,et al.  A consistent geometrically non‐linear approach for delamination , 2002 .

[20]  R. de Borst,et al.  Analysis of delamination growth with discontinuous solid-like shell elements , 2002 .

[21]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[22]  A. Needleman,et al.  A cohesive segments method for the simulation of crack growth , 2003 .

[23]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[24]  R. Borst,et al.  COMPUTATIONAL ASPECTS OF COHESIVE – ZONE MODELS , 2004 .

[25]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .

[26]  K. Liew,et al.  A mesh-free simulation of cracking and failure using the cohesive segments method , 2007 .

[27]  A. Needleman,et al.  The simulation of dynamic crack propagation using the cohesive segments method , 2008 .

[28]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..