Parametric excitation of two internally resonant oscillators

Abstract The response of two-degree-of-freedom systems with quadratic non-linearities to a principal parametric resonance in the presence of two-to-one internal resonances is investigated. The method of multiple scales is used to construct a first-order uniform expansion yielding four first-order non-linear ordinary differential (averaged) equations governing the modulation of the amplitudes and the phases of the two modes. These equations are used to determine steady state responses and their stability. When the higher mode is excited by a principal parametric resonance, the non-trivial steady state value of its amplitude is a constant that is independent of the excitation amplitude, whereas the amplitude of the lower mode, which is indirectly excited through the internal resonance, increases with the amplitude of the excitation. However, in addition to Poincare-type bifurcations, this response exhibits a Hopf bifurcation leading to amplitude- and phase-modulated motions. When the lower mode is excited by a principal parametric resonance, the averaged equations exhibit both Poincare and Hopf bifurcations. In some intervals of the parameters, the periodic solutions of the averaged equations, in the latter case, experience period-doubling bifurcations, leading to chaos.