The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin

[1]  Alexander K. Buell,et al.  Opposed Effects of Dityrosine Formation in Soluble and Aggregated α-Synuclein on Fibril Growth , 2017, Journal of molecular biology.

[2]  F. Sobott,et al.  Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1 , 2017, The Journal of Biological Chemistry.

[3]  H. Ecroyd,et al.  Small Heat-shock Proteins Prevent α-Synuclein Aggregation via Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation* , 2016, The Journal of Biological Chemistry.

[4]  A. Dillin,et al.  Walking the tightrope: proteostasis and neurodegenerative disease , 2016, Journal of neurochemistry.

[5]  Yonghua Wang,et al.  Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function. , 2015, Structure.

[6]  B. Reif,et al.  The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client , 2015, Nature Structural &Molecular Biology.

[7]  E. Thornell,et al.  Regulation of αA- and αB-crystallins via phosphorylation in cellular homeostasis , 2015, Cellular and Molecular Life Sciences.

[8]  Blagojce Jovcevski,et al.  Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity. , 2015, Chemistry & biology.

[9]  J. Carver,et al.  Small heat-shock proteins: important players in regulating cellular proteostasis , 2015, Cellular and Molecular Life Sciences.

[10]  S. Strelkov,et al.  Dissecting the Functional Role of the N-Terminal Domain of the Human Small Heat Shock Protein HSPB6 , 2014, PloS one.

[11]  W. Boelens,et al.  Cell biological roles of αB-crystallin. , 2014, Progress in biophysics and molecular biology.

[12]  Alexander K. Buell,et al.  Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation , 2014, Proceedings of the National Academy of Sciences.

[13]  PNAS Plus Significance Statements , 2014, Proceedings of the National Academy of Sciences.

[14]  Johannes Buchner,et al.  Regulated structural transitions unleash the chaperone activity of αB-crystallin , 2013, Proceedings of the National Academy of Sciences.

[15]  Georg K. A. Hochberg,et al.  C-terminal interactions mediate the quaternary dynamics of αB-crystallin , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  R. Klevit,et al.  One size does not fit all: The oligomeric states of αB crystallin , 2013, FEBS letters.

[17]  Amie M. Morris,et al.  Structural and Functional Aspects of Hetero-oligomers Formed by the Small Heat Shock Proteins αB-Crystallin and HSP27* , 2013, The Journal of Biological Chemistry.

[18]  M. Yohda,et al.  Nonequivalence observed for the 16-meric structure of a small heat shock protein, SpHsp16.0, from Schizosaccharomyces pombe. , 2013, Structure.

[19]  H. Ecroyd,et al.  The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin. , 2012, The Biochemical journal.

[20]  R. Klevit,et al.  Binding determinants of the small heat shock protein, αB‐crystallin: recognition of the ‘IxI’ motif , 2012, The EMBO journal.

[21]  Alice R. Clark,et al.  sHSP in the eye lens: crystallin mutations, cataract and proteostasis. , 2012, The international journal of biochemistry & cell biology.

[22]  C. Emanuelsson,et al.  Probing the transient interaction between the small heat-shock protein Hsp21 and a model substrate protein using crosslinking mass spectrometry , 2012, Cell Stress and Chaperones.

[23]  H. Mchaourab,et al.  Crystal structure of an activated variant of small heat shock protein Hsp16.5. , 2012, Biochemistry.

[24]  H. Mchaourab,et al.  Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. , 2012, Biochemistry.

[25]  P. Brundin,et al.  Membrane interaction of α-synuclein in different aggregation states. , 2012, Journal of Parkinson's disease.

[26]  John L Rubinstein,et al.  The polydispersity of αB-crystallin is rationalized by an interconverting polyhedral architecture. , 2011, Structure.

[27]  Johannes Buchner,et al.  Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach , 2011, Proceedings of the National Academy of Sciences.

[28]  L. Kay,et al.  αB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. , 2011, Journal of molecular biology.

[29]  L. Kay,et al.  Quaternary dynamics of αB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus. , 2011, Journal of molecular biology.

[30]  Andreas Bracher,et al.  Molecular chaperones in protein folding and proteostasis , 2011, Nature.

[31]  Rachel E. Klevit,et al.  N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity , 2011, Proceedings of the National Academy of Sciences.

[32]  M. Yohda,et al.  Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0. , 2011, Journal of structural biology.

[33]  Ronald Kühne,et al.  Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers , 2010, Nature Structural &Molecular Biology.

[34]  David Eisenberg,et al.  Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function , 2010, Protein science : a publication of the Protein Society.

[35]  E. Vierling,et al.  Substrate binding site flexibility of the small heat shock protein molecular chaperones , 2009, Proceedings of the National Academy of Sciences.

[36]  U. Andley Effects of α-Crystallin on Lens Cell Function and Cataract Pathology , 2009 .

[37]  P. Stewart,et al.  Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. , 2009, Biochemistry.

[38]  R. Klevit,et al.  alphaB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. , 2009, Journal of molecular biology.

[39]  C. Robinson,et al.  Small Heat Shock Protein Activity Is Regulated by Variable Oligomeric Substructure* , 2008, Journal of Biological Chemistry.

[40]  J. Carver,et al.  The effect of small molecules in modulating the chaperone activity of αB‐crystallin against ordered and disordered protein aggregation , 2008, The FEBS journal.

[41]  Richard I. Morimoto,et al.  Adapting Proteostasis for Disease Intervention , 2008, Science.

[42]  P. Stewart,et al.  Cryoelectron Microscopy and EPR Analysis of Engineered Symmetric and Polydisperse Hsp16.5 Assemblies Reveals Determinants of Polydispersity and Substrate Binding* , 2006, Journal of Biological Chemistry.

[43]  John I. Clark,et al.  Structure-based analysis of the β8 interactive sequence of human αB crystallin , 2006 .

[44]  Y. Sreelakshmi,et al.  The interaction between alphaA- and alphaB-crystallin is sequence-specific. , 2006, Molecular vision.

[45]  Carol V Robinson,et al.  Phosphorylation of αB-Crystallin Alters Chaperone Function through Loss of Dimeric Substructure* , 2004, Journal of Biological Chemistry.

[46]  M. Yohda,et al.  Role of the N-terminal region of the crenarchaeal sHsp, StHsp14.0, in thermal-induced disassembly of the complex and molecular chaperone activity. , 2004, Biochemical and biophysical research communications.

[47]  Christine Slingsby,et al.  Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in αB-crystallin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  V. Subramaniam,et al.  Dependence of α-synuclein aggregate morphology on solution conditions , 2002 .

[49]  Christine Slingsby,et al.  Crystal structure and assembly of a eukaryotic small heat shock protein , 2001, Nature Structural Biology.

[50]  A. Tardieu,et al.  alpha-Crystallin quaternary structure and interactive properties control eye lens transparency. , 1998, International journal of biological macromolecules.

[51]  J. Buchner,et al.  Structure and function of α-crystallins: Traversing from in vitro to in vivo. , 2016, Biochimica et biophysica acta.

[52]  H. Kampinga,et al.  The Multicolored World of the Human HSPB Family , 2015 .

[53]  H. Ecroyd Redefining the chaperone mechanism of sHsps: not just holdase chaperones , 2015 .

[54]  J. Carver,et al.  Crystallin proteins and amyloid fibrils , 2008, Cellular and Molecular Life Sciences.

[55]  M. Bova,et al.  Lens alpha-crystallin: chaperone-like properties. , 1998, Methods in enzymology.