Bounded distortion tetrahedral metric interpolation

We present a method for volumetric shape interpolation with unique shape preserving features. The input to our algorithm are two or more 3-manifolds, immersed into R3 and discretized as tetrahedral meshes with shared connectivity. The output is a continuum of shapes that naturally blends the input shapes, while striving to preserve the geometric character of the input. The basis of our approach relies on the fact that the space of metrics with bounded isometric and angular distortion is convex [Chien et al. 2016b]. We show that for high dimensional manifolds, the bounded distortion metrics form a positive semidefinite cone product space. Our method can be seen as a generalization of the bounded distortion interpolation technique of [Chen et al. 2013] from planar shapes immersed in R2 to solids in R3. The convexity of the space implies that a linear blend of the (squared) edge lengths of the input tetrahedral meshes is a simple yet powerful-and-natural choice. Linearly blending flat metrics results in a new metric which is, in general, not flat, and cannot be immersed into three-dimensional space. Nonetheless, the amount of curvature that is introduced in the process tends to be very low in practical settings. We further design an extremely robust nonconvex optimization procedure that efficiently flattens the metric. The flattening procedure strives to preserve the low distortion exhibited in the blended metric while guaranteeing the validity of the metric, resulting in a locally injective map with bounded distortion. Our method leads to volumetric interpolation with superb quality, demonstrating significant improvement over the state-of-the-art and qualitative properties which were obtained so far only in interpolating manifolds of lower dimensions.

[1]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  Roi Poranne,et al.  Provably good planar mappings , 2014, ACM Trans. Graph..

[4]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[5]  P. Schröder,et al.  Spin transformations of discrete surfaces , 2011, SIGGRAPH 2011.

[6]  P. Alsing,et al.  The Simplicial Ricci Tensor , 2011, 1107.2458.

[7]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[8]  Zohar Levi,et al.  On the convexity and feasibility of the bounded distortion harmonic mapping problem , 2016, ACM Trans. Graph..

[9]  Pierre Poulin,et al.  Dihedral angle-based maps of tetrahedral meshes , 2015, ACM Trans. Graph..

[10]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[11]  Moritz Diehl,et al.  Local Convergence of Sequential Convex Programming for Nonconvex Optimization , 2010 .

[12]  Ofir Weber,et al.  GPU-accelerated locally injective shape deformation , 2017, ACM Trans. Graph..

[13]  Guillermo Sapiro,et al.  Geodesics in Shape Space via Variational Time Discretization , 2009, EMMCVPR.

[14]  Michael Garland,et al.  Free-form motion processing , 2008, TOGS.

[15]  T. Regge General relativity without coordinates , 1961 .

[16]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[17]  Theodore Kim,et al.  Analytic Eigensystems for Isotropic Distortion Energies , 2019, ACM Trans. Graph..

[18]  Norman I. Badler,et al.  Perform: perceptual approach for adding OCEAN personality to human motion using laban movement analysis , 2017, TOGS.

[19]  Ofir Weber,et al.  Fast Planar Harmonic Deformations with Alternating Tangential Projections , 2017, Comput. Graph. Forum.

[20]  Peter Schröder,et al.  Geometric elasticity for graphics, simulation, and computation , 2014 .

[21]  Hujun Bao,et al.  Poisson shape interpolation , 2005, SPM '05.

[22]  Ligang Liu,et al.  Progressive parameterizations , 2018, ACM Trans. Graph..

[23]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[24]  W. Miller,et al.  Piecewise Flat Curvature and Ricci Flow in Three Dimensions , 2016, 1603.03113.

[25]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[26]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[27]  Warner A. Miller,et al.  Piecewise Flat Curvature and Ricci Flow in Three Dimensions , 2017 .

[28]  Martin Rumpf,et al.  A Nonlinear Elastic Shape Averaging Approach , 2009, SIAM J. Imaging Sci..

[29]  Keenan Crane,et al.  Spin transformations of discrete surfaces , 2011, ACM Trans. Graph..

[30]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[31]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[32]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[33]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[34]  Peter Schröder,et al.  Close-to-conformal deformations of volumes , 2015, ACM Trans. Graph..

[35]  Ofir Weber,et al.  Controllable conformal maps for shape deformation and interpolation , 2010, ACM Trans. Graph..

[36]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[37]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[38]  Denis Zorin,et al.  Computing Extremal Quasiconformal Maps , 2012, Comput. Graph. Forum.

[39]  Ofir Weber,et al.  Bounded distortion harmonic mappings in the plane , 2015, ACM Trans. Graph..

[40]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[41]  Yang Liu,et al.  Efficient Volumetric PolyCube‐Map Construction , 2016, Comput. Graph. Forum.

[42]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[43]  Robert Bridson,et al.  Planar interpolation with extreme deformation, topology change and dynamics , 2017, ACM Trans. Graph..

[44]  Martin Rumpf,et al.  Time‐Discrete Geodesics in the Space of Shells , 2012, Comput. Graph. Forum.

[45]  Jung-Rye Lee THE LAW OF COSINES IN A TETRAHEDRON , 1997 .

[46]  Xianfeng Gu,et al.  Discrete Curvature Flows for Surfaces and 3-Manifolds , 2009, ETVC.

[47]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[48]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[49]  Hans-Peter Seidel,et al.  Real-Time Nonlinear Shape Interpolation , 2015, ACM Trans. Graph..

[50]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[51]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[52]  Ofir Weber,et al.  A Subspace Method for Fast Locally Injective Harmonic Mapping , 2019, Comput. Graph. Forum.

[53]  Ofir Weber,et al.  Bounded distortion harmonic shape interpolation , 2016, ACM Trans. Graph..

[54]  Zohar Levi,et al.  Bounded distortion parametrization in the space of metrics , 2016, ACM Trans. Graph..

[55]  Martin Rumpf,et al.  Exploring the Geometry of the Space of Shells , 2014, Comput. Graph. Forum.

[56]  Mirela Ben-Chen,et al.  Planar shape interpolation with bounded distortion , 2013, ACM Trans. Graph..

[57]  Ligang Liu,et al.  Volume-Enhanced Compatible Remeshing of 3D Models , 2019, IEEE Transactions on Visualization and Computer Graphics.

[58]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .