On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring

Let $$\gamma = 4z-1$$ be an unit of Type $$(*^{-})$$ of the Galois ring $${{\,\mathrm{GR}\,}}(2^a, m)$$ . The $$\gamma$$ -constacyclic codes of length $$2^s$$ over the Galois ring $${{\,\mathrm{GR}\,}}(2^a, m)$$ are precisely the ideals $$\langle (x +1)^i \rangle$$ , $$0 \le i \le 2^sa$$ of the chain ring $$\mathfrak {R}(a,m, \gamma ) = \dfrac{{{\,\mathrm{GR}\,}}(2^a,m)[x]}{\langle {x^{2^s}} - \gamma \rangle }$$ . This structure is used to determine the symbol pair distance of $$\gamma$$ -constacyclic codes of length $$2^s$$ over $${{\,\mathrm{GR}\,}}(2^a, m)$$ . The exact symbol-pair distances for all such $$\gamma$$ -constacyclic codes of length $$2^s$$ over $${{\,\mathrm{GR}\,}}(2^a, m)$$ are obtained. Also, we provide the MDS symbol-pair codes of length $$2^s$$ over $${{\,\mathrm{GR}\,}}(2^a, m)$$ and some examples are computed.

[1]  Sucheta Dutt,et al.  Cyclic Codes over Galois Rings , 2016, CALDAM.

[2]  H. Dinh Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.

[3]  Hai Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length Over , 2007 .

[4]  Carmen-Simona Nedeloaia Weight distributions of cyclic self-dual codes , 2003, IEEE Trans. Inf. Theory.

[5]  B. R. McDonald Finite Rings With Identity , 1974 .

[6]  Hongwei Liu,et al.  On structure and distances of some classes of repeated-root constacyclic codes over Galois rings , 2017, Finite Fields Their Appl..

[7]  Simon Litsyn,et al.  Symbol-pair codes: Algebraic constructions and asymptotic bounds , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[8]  Daniel J. Costello,et al.  Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.

[9]  Songsak Sriboonchitta,et al.  On the Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths , 2018, IEEE Transactions on Information Theory.

[10]  H. Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length $2^{s}$ Over $\BBZ _{2^{a}}$ , 2007, IEEE Transactions on Information Theory.

[11]  Hai Q. Dinh,et al.  On Some Classes of Repeated-root Constacyclic Codes of Length a Power of 2 over Galois Rings , 2010 .

[12]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[13]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[14]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[15]  Paul H. Siegel,et al.  Decoding of cyclic codes over symbol-pair read channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[16]  Ana Slgean Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .

[17]  Hai Quang Dinh,et al.  On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions , 2008, Finite Fields Their Appl..

[18]  S. Berman Semisimple cyclic and Abelian codes. II , 1967 .

[19]  Taher Abualrub,et al.  On the Generators of Cyclic Codes of Length , 2003 .

[20]  N. J. A. Sloane,et al.  A linear construction for certain Kerdock and Preparata codes , 1993, ArXiv.

[21]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[22]  Taher Abualrub,et al.  On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.

[23]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.

[24]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[25]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[26]  Hai Dinh Structure of some classes of repeated-root constacyclic codes over integers modulo 2m , 2006 .

[27]  Q DinhHai Constacyclic codes of length 2sover Galois extension rings of F2 + uF2 , 2009 .

[28]  Tao Zhang,et al.  Maximum Distance Separable Codes for b-Symbol Read Channels , 2016, Finite Fields Their Appl..

[29]  Ron M. Roth,et al.  On cyclic MDS codes of length q over GF(q) , 1986, IEEE Trans. Inf. Theory.

[30]  Masakatu Morii,et al.  Syndrome decoding of symbol-pair codes , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[31]  H. Dinh Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .

[32]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[33]  Mario Blaum,et al.  Codes for Symbol-Pair Read Channels , 2011, IEEE Trans. Inf. Theory.

[34]  Yeow Meng Chee,et al.  Maximum Distance Separable Codes for Symbol-Pair Read Channels , 2012, IEEE Transactions on Information Theory.

[35]  Shixin Zhu,et al.  A Construction of New MDS Symbol-Pair Codes , 2015, IEEE Transactions on Information Theory.

[36]  Cheong Boon Soh,et al.  A note on the q-ary image of a qm-ary repeated-root cyclic code , 1997, IEEE Trans. Inf. Theory.

[37]  Paul H. Siegel,et al.  Constructions and Decoding of Cyclic Codes Over $b$ -Symbol Read Channels , 2016, IEEE Transactions on Information Theory.

[38]  Jacobus H. van Lint Repeated-root cyclic codes , 1991, IEEE Trans. Inf. Theory.

[39]  Hai Q. Dinh,et al.  REPEATED-ROOT CYCLIC AND NEGACYCLIC CODES OF PRIME POWER LENGTHS WITH A FINITE COMMUTATIVE CHAIN RING ALPHABET , 2011 .

[40]  Bocong Chen,et al.  Constacyclic Symbol-Pair Codes: Lower Bounds and Optimal Constructions , 2016, IEEE Transactions on Information Theory.