Invariant natural killer T cells developing in the human fetus accumulate and mature in the small intestine

[1]  G. Mendz,et al.  Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women , 2013, Front. Cell. Infect. Microbiol..

[2]  P. Savage,et al.  Natural killer T (NKT)–B-cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides , 2013, Proceedings of the National Academy of Sciences.

[3]  M. Fischbach,et al.  Production of α-Galactosylceramide by a Prominent Member of the Human Gut Microbiota , 2013, PLoS biology.

[4]  J. Rossjohn,et al.  Recognition of CD1d-restricted antigens by natural killer T cells , 2012, Nature Reviews Immunology.

[5]  S. Mazmanian,et al.  Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. , 2012, Gastroenterology.

[6]  R. Siebert,et al.  Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function , 2012, Science.

[7]  Jelena S. Bezbradica,et al.  IL-15 Regulates Homeostasis and Terminal Maturation of NKT Cells , 2011, The Journal of Immunology.

[8]  G. Besra,et al.  Invariant natural killer T cells recognize lipid self-antigen induced by microbial danger signals , 2011, Nature Immunology.

[9]  J. Weiss,et al.  The split personality of NKT cells in malignancy, autoimmune and allergic disorders. , 2011, Immunotherapy.

[10]  G. Besra,et al.  Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells. , 2011, Immunology letters.

[11]  L. Sangalli,et al.  Invariant NKT Cell Reconstitution in Pediatric Leukemia Patients Given HLA-Haploidentical Stem Cell Transplantation Defines Distinct CD4+ and CD4− Subset Dynamics and Correlates with Remission State , 2011, The Journal of Immunology.

[12]  M. Smyth,et al.  Presumed guilty: natural killer T cell defects and human disease , 2011, Nature Reviews Immunology.

[13]  Dapeng Zhou,et al.  Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation. , 2010, Blood.

[14]  M. Levings,et al.  Natural killer T cells constitutively expressing the interleukin‐2 receptor α chain early in life are primed to respond to lower antigenic stimulation , 2010, Immunology.

[15]  S. Rautava,et al.  Breast Milk-Transforming Growth Factor-β2 Specifically Attenuates IL-1β-Induced Inflammatory Responses in the Immature Human Intestine via an SMAD6- and ERK-Dependent Mechanism , 2010, Neonatology.

[16]  G. Willimsky,et al.  Commensal microflora and interferon‐γ promote steady‐state interleukin‐7 production in vivo , 2010, European journal of immunology.

[17]  P. Debré,et al.  Shaping of iNKT cell repertoire after unrelated cord blood transplantation. , 2010, Clinical immunology.

[18]  D. Godfrey,et al.  Raising the NKT cell family , 2010, Nature Immunology.

[19]  A. Lehuen,et al.  NKT cells: Friend or foe during viral infections? , 2009, European journal of immunology.

[20]  M. Hattori,et al.  Cd1d-dependent regulation of bacterial colonization in the intestine of mice. , 2009, The Journal of clinical investigation.

[21]  R. Satokari,et al.  Bifidobacterium and Lactobacillus DNA in the human placenta , 2009, Letters in applied microbiology.

[22]  Hyun-Dong Chang,et al.  Innate-Like Effector Differentiation of Human Invariant NKT Cells Driven by IL-71 , 2008, The Journal of Immunology.

[23]  G. Besra,et al.  Peripheral NK1.1− NKT Cells Are Mature and Functionally Distinct from Their Thymic Counterparts1 , 2007, The Journal of Immunology.

[24]  E. Kuipers,et al.  Roles of CD1d‐restricted NKT cells in the intestine , 2007, Inflammatory bowel diseases.

[25]  Mark S. Sundrud,et al.  Human Natural Killer T Cells Are Heterogeneous in Their Capacity to Reprogram Their Effector Functions , 2006, PloS one.

[26]  Jeff E. Mold,et al.  Regulation of T Cell Responses in the Developing Human Fetus1 , 2006, The Journal of Immunology.

[27]  D. Pellicci,et al.  The Influence of CD1d in Postselection NKT Cell Maturation and Homeostasis1 , 2005, The Journal of Immunology.

[28]  D. Wei,et al.  Characterization of the early stages of thymic NKT cell development , 2005, The Journal of experimental medicine.

[29]  L. Hennighausen,et al.  Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. , 2005, Immunity.

[30]  D. Pellicci,et al.  Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples , 2005, European journal of immunology.

[31]  D. Ho,et al.  Recognition of bacterial glycosphingolipids by natural killer T cells , 2005, Nature.

[32]  M. Caligiuri,et al.  A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. , 2005, Immunity.

[33]  K. Weinberg,et al.  Distinct homeostatic requirements of CD4+ and CD4- subsets of Valpha24-invariant natural killer T cells in humans. , 2004, Blood.

[34]  M. Exley,et al.  To be or not to be NKT: Natural killer T cells in the liver , 2004, Hepatology.

[35]  S. Fisher,et al.  Viral and bacterial pathogens at the maternal-fetal interface. , 2004, The Journal of infectious diseases.

[36]  C. Leclerc,et al.  Neonatal adaptive immunity comes of age , 2004, Nature Reviews Immunology.

[37]  D. Nixon,et al.  Development of innate CD4+ α-chain variable gene segment 24 (Vα24) natural killer T cells in the early human fetal thymus is regulated by IL-7 , 2004 .

[38]  K. Schroder,et al.  Interferon‐γ: an overview of signals, mechanisms and functions , 2004 .

[39]  D. Nixon,et al.  Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate Vα24 NKT cell compartment , 2003, European journal of immunology.

[40]  J. Strominger,et al.  CD1d and invariant NKT cells at the human maternal–fetal interface , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Takashi Yamamura,et al.  Functionally Distinct Subsets of CD1d-restricted Natural Killer T Cells Revealed by CD1d Tetramer Staining , 2002, The Journal of experimental medicine.

[42]  M. Kronenberg,et al.  NKT cells derive from double-positive thymocytes that are positively selected by CD1d , 2001, Nature Immunology.

[43]  A. Cumano,et al.  Identification of committed NK cell progenitors in adult murine bone marrow , 2001, European journal of immunology.

[44]  C. Feighery,et al.  Human small intestinal epithelial cells secrete interleukin-7 and differentially express two different interleukin-7 mRNA Transcripts: implications for extrathymic T-cell differentiation. , 1997, Human immunology.

[45]  Hiroshi Sato,et al.  CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. , 1997, Science.

[46]  H. Macdonald,et al.  NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function , 1995, The Journal of experimental medicine.

[47]  D. Theriaque,et al.  Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. , 2010, The Journal of pediatrics.

[48]  K. Schroder,et al.  Interferon-gamma: an overview of signals, mechanisms and functions. , 2004, Journal of leukocyte biology.

[49]  E. Rothenberg,et al.  Reprints Available Directly from the Publisher Photocopying Permitted by License Only Spontaneous Expression of Interleukin-2 in Vivo in Specific Tissues of Young Mice , 2022 .