Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression

[1]  Jennifer E. Phillips-Cremins,et al.  On the existence and functionality of topologically associating domains , 2020, Nature Genetics.

[2]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[3]  Leonid A. Mirny,et al.  Ultrastructural details of mammalian chromosome architecture , 2019, bioRxiv.

[4]  T. Holy,et al.  Sensory Experience Remodels Genome Architecture in Neural Circuit to Drive Motor Learning , 2019, Nature.

[5]  Thomas G. Gilgenast,et al.  Systematic Evaluation of Statistical Methods for Identifying Looping Interactions in 5C Data. , 2019, Cell systems.

[6]  Thomas G. Gilgenast,et al.  3DeFDR: Identifying cell type-specific looping interactions with empirical false discovery rate guided thresholding , 2018, bioRxiv.

[7]  Michael E. Greenberg,et al.  Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior , 2018, Neuron.

[8]  Thomas G. Gilgenast,et al.  Disease-Associated Short Tandem Repeats Co-localize with Chromatin Domain Boundaries , 2018, Cell.

[9]  Jennifer E. Phillips-Cremins,et al.  LADL: Light-activated dynamic looping for endogenous gene expression control , 2018, bioRxiv.

[10]  Jennifer E. Phillips-Cremins,et al.  5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design. , 2018, Methods.

[11]  Serena M. Dudek,et al.  Different Neuronal Activity Patterns Induce Different Gene Expression Programs , 2018, Neuron.

[12]  Haley O. Tucker,et al.  Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity , 2017, The Journal of Neuroscience.

[13]  Jennifer E. Phillips-Cremins,et al.  Crossed wires: 3D genome misfolding in human disease , 2017, The Journal of cell biology.

[14]  A. Tanay,et al.  Multiscale 3D Genome Rewiring during Mouse Neural Development , 2017, Cell.

[15]  Jennifer E. Phillips-Cremins,et al.  YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment , 2017, Genome research.

[16]  J. Rosenfeld,et al.  YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction , 2017, American journal of human genetics.

[17]  Michael P Snyder,et al.  Static and dynamic DNA loops form AP-1 bound activation hubs during macrophage development , 2017, bioRxiv.

[18]  Christopher S. Poultney,et al.  Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia , 2017, Molecular Autism.

[19]  Jing Wang,et al.  WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit , 2017, Nucleic Acids Res..

[20]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[21]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[22]  G. Ming,et al.  Neuronal activity modifies the chromatin accessibility landscape in the adult brain , 2017, Nature Neuroscience.

[23]  Daning Lu,et al.  Chromosome conformation elucidates regulatory relationships in developing human brain , 2016, Nature.

[24]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[25]  Lior Pachter,et al.  Differential analysis of RNA-seq incorporating quantification uncertainty , 2016, Nature Methods.

[26]  Thomas G. Gilgenast,et al.  Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming. , 2016, Cell stem cell.

[27]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[28]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[29]  Daniel S. Day,et al.  Activation of proto-oncogenes by disruption of chromosome neighborhoods , 2015, Science.

[30]  Tae-Kyung Kim,et al.  Stimulus-specific combinatorial functionality of neuronal c-fos enhancers , 2015, Nature Neuroscience.

[31]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[32]  A. Sinning,et al.  Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity , 2015, Front. Cell. Neurosci..

[33]  Joel Hirschhorn,et al.  SNPsnap: a Web-based tool for identification and annotation of matched SNPs , 2015, Bioinform..

[34]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[35]  Gabi Kastenmüller,et al.  SNiPA: an interactive, genetic variant-centered annotation browser , 2014, Bioinform..

[36]  Thomas Vierbuchen,et al.  Genome-wide identification and characterization of functional neuronal activity–dependent enhancers , 2014, Nature Neuroscience.

[37]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[38]  Jennifer E. Phillips-Cremins Unraveling architecture of the pluripotent genome. , 2014, Current opinion in cell biology.

[39]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[40]  Heinrich Sticht,et al.  De novo mutations in the genome organizer CTCF cause intellectual disability. , 2013, American journal of human genetics.

[41]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[42]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[43]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[44]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[45]  Y. Yoshimura,et al.  CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. , 2012, Cell reports.

[46]  R. Malenka,et al.  NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). , 2012, Cold Spring Harbor perspectives in biology.

[47]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[48]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[49]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[50]  Ananda L Roy,et al.  Regulation of primary response genes. , 2011, Molecular cell.

[51]  B. Langmead,et al.  Aligning Short Sequencing Reads with Bowtie , 2010, Current protocols in bioinformatics.

[52]  Sharon R Grossman,et al.  Integrating common and rare genetic variation in diverse human populations , 2010, Nature.

[53]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[54]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[55]  Job Dekker,et al.  My5C: web tools for chromosome conformation capture studies , 2009, Nature Methods.

[56]  S. Finkbeiner,et al.  The Serum Response Factor and a Putative Novel Transcription Factor Regulate Expression of the Immediate-Early Gene Arc/Arg3.1 in Neurons , 2009, The Journal of Neuroscience.

[57]  H. Okuno,et al.  Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons , 2009, Proceedings of the National Academy of Sciences.

[58]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[59]  Steven W. Flavell,et al.  Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. , 2008, Annual review of neuroscience.

[60]  R. Huganir,et al.  The cell biology of synaptic plasticity: AMPA receptor trafficking. , 2007, Annual review of cell and developmental biology.

[61]  Jing Wu,et al.  Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors , 2006, Neuron.

[62]  U. Frey,et al.  Somatodendritic expression of an immediate early gene is regulated by synaptic activity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Carol A Barnes,et al.  Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites , 1995, Neuron.

[64]  T. Curran,et al.  Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. , 1985, Science.

[65]  Michael E. Greenberg,et al.  Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene , 1984, Nature.

[66]  M. Neal,et al.  Evaluation of Bicuculline as a GABA Antagonist , 1971, Nature.

[67]  JOHN W. Moore,et al.  Tetrodotoxin Blockage of Sodium Conductance Increase in Lobster Giant Axons , 1964, The Journal of general physiology.

[68]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[69]  T. Cremer,et al.  Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories , 2004, Human Genetics.

[70]  T. Curran,et al.  Induction of c-fos gene and protein by growth factors precedes activation of c-myc , 1984, Nature.