Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces

A numerical model for simulating the melting of a phase change material (PCM) housed within an internally-finned metal enclosure is developed. A finite volume approach, utilizing the temperature-transforming model for phase change, is used to predict the conjugate heat transfer in the cavity walls and fins, as well as within the molten PCM. The influence of the number of fins, the fin length and thickness, and the hot wall temperature on the melting process is reported. With horizontal fins, rapid melting occurs during the early stages of the phase change, followed by a second, slow melting regime. Analytical correlations are developed that can be used to quickly estimate melting rates during both melting regimes, and it is shown that the predictions of the correlations are in good agreement with those of the detailed model.

[1]  A. Class,et al.  AN INTERFACE-TRACKING CONTROL-VOLUME FINITE-ELEMENT METHOD FOR MELTING AND SOLIDIFICATION PROBLEMS- PART II: VERIFICATION AND APPLICATION , 2001 .

[2]  Philip C. Eames,et al.  Thermal regulation of building-integrated photovoltaics using phase change materials , 2004 .

[3]  K. Sagara,et al.  Latent Heat Storage Materials and Systems: A Review , 2005 .

[4]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[5]  H. L. Stone ITERATIVE SOLUTION OF IMPLICIT APPROXIMATIONS OF MULTIDIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS , 1968 .

[6]  A. Faghri,et al.  A numerical analysis of phase-change problems including natural convection , 1990 .

[7]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[8]  Marcel Lacroix,et al.  Melting driven by natural convection A comparison exercise: first results , 1999 .

[9]  Amir Faghri,et al.  TEMPERATURE-TRANSFORMING MODEL FOR BINARY SOLID-LIQUID PHASE-CHANGE PROBLEMS PART II: NUMERICAL SIMULATION , 1994 .

[10]  M. Lacroix,et al.  NUMERICAL SIMULATION OF NATURAL CONVECTION-DOMINATED MELTING AND SOLIDIFICATION FROM A FINNED VERTICAL WALL , 1997 .

[11]  A. G. Class,et al.  AN INTERFACE-TRACKING CONTROL-VOLUME FINITE-ELEMENT METHOD FOR MELTING AND SOLIDIFICATION PROBLEMS- PART I: FORMULATION , 2001 .

[12]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[13]  T. L. Bergman,et al.  High temperature latent heat thermal energy storage using heat pipes , 2010 .

[14]  G. Ziskind,et al.  Numerical investigation of a PCM-based heat sink with internal fins , 2005 .

[15]  Luisa F. Cabeza,et al.  Improvement of a thermal energy storage using plates with paraffin–graphite composite , 2005 .

[16]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[17]  Marcel Lacroix,et al.  Analysis of natural convection melting from a heated wall with vertically oriented fins , 1998 .

[18]  A. Elgafy,et al.  Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage using High Thermal Conductivity Porous Matrix , 2005 .

[19]  J. Howell,et al.  Advanced Heat and Mass Transfer , 2010 .

[20]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[21]  Zhanhua Ma,et al.  Solid velocity correction schemes for a temperature transforming model for convection phase change , 2006 .

[22]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[23]  T. Sheu,et al.  On a Mushy Cell Tracking Method for Simulating Gallium Melting , 2007 .

[24]  F. Durst,et al.  Modeling Moving-Boundary Problems of Solidification and Melting Adopting an Arbitrary Lagrangian-Eulerian Approach , 2006 .

[25]  A. Sari,et al.  Microencapsulated n-octacosane as phase change material for thermal energy storage , 2009 .

[26]  T. L. Bergman,et al.  Enhancement of latent heat energy storage using embedded heat pipes , 2011 .

[27]  Amir Faghri,et al.  A comprehensive numerical model for melting with natural convection , 2010 .

[28]  M. Gharebaghi,et al.  Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins , 2007 .

[29]  Vasilios Alexiades,et al.  RESOLVING THE CONTROVERSY OVER TIN AND GALLIUM MELTING IN A RECTANGULAR CAVITY HEATED FROM THE SIDE , 2003 .

[30]  Amir Faghri,et al.  TEMPERATURE-TRANSFORMING MODEL FOR BINARY SOLID-LIQUID PHASE-CHANGE PROBLEMS PART I: MATHEMATICAL MODELING AND NUMERICAL METHODOLOGY , 1994 .

[31]  J. Humphrey,et al.  Enhanced heat conduction in phase-change thermal energy storage devices , 1980 .

[32]  C. Balaji,et al.  Method to improve geometry for heat transfer enhancement in PCM composite heat sinks , 2005 .

[33]  Amir Faghri,et al.  Transport Phenomena in Multiphase Systems , 2006 .

[34]  A. Faghri,et al.  Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis , 1991 .