Search for Organic Thermoelectric Materials with High Mobility: The Case of 2,7-Dialkyl[1]benzothieno[3,2-b][1]benzothiophene Derivatives

Control of doping is crucial for enhancing the thermoelectric efficiency of a material. However, doping of organic semiconductors often reduces their mobilities, making it challenging to improve the thermoelectric performance. Targeting on this problem, we propose a simple model to quantitatively obtain the optimal doping level and the peak value of thermoelectric figure of merit (zT) from the intrinsic carrier mobility, the lattice thermal conductivity, and the effective density of states. The model reveals that high intrinsic mobility and low lattice thermal conductivity give rise to a low optimal doping level and a high maximum zT. To demonstrate how the model works, we investigate, from first-principles calculations, the thermoelectric properties of a novel class of excellent hole transport organic materials, 2,7-dialkyl[1]benzothieno[3,2-b][1]benzothiophene derivatives (Cn-BTBTs). The first-principles calculations show that BTBTs exhibit high mobilities, extremely low thermal conductivities (∼0.2 W m...

[1]  J. Northrup,et al.  Two-dimensional deformation potential model of mobility in small molecule organic semiconductors , 2011 .

[2]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[3]  M. Leclerc,et al.  Synthesis and Thermoelectric Properties of Polycarbazole, Polyindolocarbazole, and Polydiindolocarbazole Derivatives , 2007 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[6]  Zhenan Bao,et al.  Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method , 2014, Nature Communications.

[7]  Zhigang Shuai,et al.  First-Principles Predictions of Thermoelectric Figure of Merit for Organic Materials: Deformation Potential Approximation. , 2012, Journal of chemical theory and computation.

[8]  N. T. Kemp,et al.  Thermoelectric power and conductivity of different types of polypyrrole , 1999 .

[9]  K. Pernstich,et al.  Field-effect-modulated Seebeck coefficient in organic semiconductors. , 2008, Nature materials.

[10]  H. Fritzsche A general expression for the thermoelectric power , 1971 .

[11]  Y. Kudo,et al.  Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations. , 2013, The Journal of chemical physics.

[12]  A. Zunger,et al.  Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends , 1999 .

[13]  Itaru Osaka,et al.  Thienoacene‐Based Organic Semiconductors , 2011, Advanced materials.

[14]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[15]  Zhigang Shuai,et al.  Theoretical predictions of size-dependent carrier mobility and polarity in graphene. , 2009, Journal of the American Chemical Society.

[16]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Klaus Müllen,et al.  A Soluble Pentacene Precursor: Synthesis, Solid‐State Conversion into Pentacene and Application in a Field‐Effect Transistor , 1999 .

[18]  Dirk Reith,et al.  Cause and Effect Reversed in Non-Equilibrium Molecular Dynamics: An Easy Route to Transport Coefficients , 1999 .

[19]  Jinyang Xi,et al.  Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction. , 2013, The journal of physical chemistry letters.

[20]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[21]  C. Adachi,et al.  Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) , 2010 .

[22]  K. Tsukagoshi,et al.  Solution‐Processable Organic Single Crystals with Bandlike Transport in Field‐Effect Transistors , 2011, Advanced materials.

[23]  Robert A Norwood,et al.  CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES 3202 Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study , 1998 .

[24]  Daoben Zhu,et al.  A three-in-one improvement in thermoelectric properties of polyaniline brought by nanostructures , 2010 .

[25]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[26]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[27]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[28]  D. Spitzer Lattice thermal conductivity of semiconductors: A chemical bond approach , 1969 .

[29]  Max Shtein,et al.  Thermoelectric and bulk mobility measurements in pentacene thin films , 2011 .

[30]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[31]  B. Kippelen,et al.  Thermal transport properties of thin films of small molecule organic semiconductors , 2005 .

[32]  K. Leo,et al.  Controlled n-type doping of a molecular organic semiconductor: Naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) , 2000 .

[33]  L. Tang,et al.  The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study , 2009 .

[34]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[35]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[36]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[37]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[38]  Mengqiu Long,et al.  Anisotropic Thermal Transport in Organic Molecular Crystals from Nonequilibrium Molecular Dynamics Simulations , 2011 .

[39]  L. Hope-weeks,et al.  Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites , 2012, Nanotechnology.

[40]  Mengqiu Long,et al.  First-principles investigation of organic semiconductors for thermoelectric applications. , 2009, The Journal of chemical physics.

[41]  P. Klemens Theory of lattice thermal conductivity: Role of low-frequency phonons , 1981 .

[42]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[43]  Alán Aspuru-Guzik,et al.  Tuning charge transport in solution-sheared organic semiconductors using lattice strain , 2011, Nature.

[44]  G. Madsen,et al.  Automated search for new thermoelectric materials: the case of LiZnSb. , 2006, Journal of the American Chemical Society.

[45]  Y. Miyazaki,et al.  Fabrication of iodine-doped pentacene thin films for organic thermoelectric devices , 2011 .

[46]  Zhigang Shuai,et al.  Evaluation of Charge Mobility in Organic Materials: From Localized to Delocalized Descriptions at a First‐Principles Level , 2011, Advanced materials.

[47]  A. Salleo,et al.  Scalable Fabrication of Strongly Textured Organic Semiconductor Micropatterns by Capillary Force Lithography , 2012, Advanced materials.

[48]  Zhigang Shuai,et al.  Modeling thermoelectric transport in organic materials. , 2012, Physical chemistry chemical physics : PCCP.

[49]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[50]  Daoben Zhu,et al.  Organic Thermoelectric Materials and Devices Based on p‐ and n‐Type Poly(metal 1,1,2,2‐ethenetetrathiolate)s , 2012, Advanced materials.

[51]  D. Emin,et al.  Thermoelectric properties of conducting polymers : The case of poly(3-hexylthiophene) , 2010 .

[52]  Zhigang Shuai,et al.  Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. , 2011, ACS nano.

[53]  M. Leclerc,et al.  Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives , 2009 .

[54]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[55]  Jorge O. Sofo,et al.  Transport coefficients from first-principles calculations , 2003 .

[56]  K. Jordan,et al.  Molecular dynamics simulations of the thermal conductivity of methane hydrate. , 2008, Journal of Physical Chemistry B.

[57]  Shiren Wang,et al.  Enhancing thermoelectric properties of organic composites through hierarchical nanostructures , 2013, Scientific Reports.

[58]  K. Takimiya,et al.  Molecular Ordering of High‐Performance Soluble Molecular Semiconductors and Re‐evaluation of Their Field‐Effect Transistor Characteristics , 2008 .

[59]  Shiren Wang,et al.  Thermal and electronic transport of semiconducting nanoparticle-functionalized carbon nanotubes , 2014 .

[60]  Kazuo Takimiya,et al.  Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. , 2007, Journal of the American Chemical Society.

[61]  S. Roth,et al.  Anisotropy of thermoelectric power of stretch-oriented new polyacetylene , 1994 .

[62]  Jürgen Hafner,et al.  Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. , 2010, The journal of physical chemistry. A.

[63]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.