The finite volume method based on stabilized finite element for the stationary Navier-Stokes problem

A finite volume method based on stabilized finite element for the two-dimensional stationary Navier-Stokes equations is investigated in this work. A macroelement condition is introduced for constructing the local stabilized formulation for the problem. We obtain the well-posedness of the FVM based on stabilized finite element for the stationary Navier-Stokes equations. Moreover, for quadrilateral and triangular partition, the optimal H^1 error estimate of the finite volume solution u"h and L^2 error estimate for p"h are introduced. Finally, we provide a numerical example to confirm the efficiency of the FVM.

[1]  Zhiqiang Cai,et al.  The finite volume element method for diffusion equations on general triangulations , 1991 .

[2]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[3]  Yinnian He,et al.  Stabilized finite-element method for the stationary Navier-Stokes equations , 2005 .

[4]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[5]  Robert L. Lee,et al.  The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .

[6]  David J. Silvester,et al.  ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .

[7]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[8]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[9]  Zhangxin Chen,et al.  On the control volume finite element methods and their applications to multiphase flow , 2006, Networks Heterog. Media.

[10]  Do Y. Kwak,et al.  Analysis and convergence of a MAC‐like scheme for the generalized Stokes problem , 1997 .

[11]  Gretar Tryggvason,et al.  Computational Methods for Multiphase Flow: Frontmatter , 2007 .

[12]  David J. Silvester,et al.  Stabilised bilinear—constant velocity—pressure finite elements for the conjugate gradient solution of the Stokes problem , 1990 .

[13]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[14]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[15]  DAVID KAY,et al.  A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..

[16]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[17]  Zhangxin Chen Finite Element Methods And Their Applications , 2005 .

[18]  Huang Jianguo,et al.  On the Finite Volume Element Method for General Self-Adjoint Elliptic Problems , 1998 .

[19]  R. Nicolaides Analysis and convergence of the MAC scheme. I : The linear problem , 1992 .

[20]  Jim E. Jones,et al.  Control‐volume mixed finite element methods , 1996 .

[21]  Thomas Kerkhoven,et al.  Piecewise Linear Petrov--Galerkin Error Estimates For The Box Method , 1996 .

[22]  D. Silvester,et al.  Stabilised vs. stable mixed methods for incompressible flow , 1998 .

[23]  Panagiotis Chatzipantelidis,et al.  A finite volume method based on the Crouzeix–Raviart element for elliptic PDE's in two dimensions , 1999, Numerische Mathematik.

[24]  So-Hsiang Chou,et al.  Analysis and convergence of a covolume method for the generalized Stokes problem , 1997, Math. Comput..

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  R. Kellogg,et al.  A regularity result for the Stokes problem in a convex polygon , 1976 .

[27]  Endre Süli Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .

[28]  Li Ronghua,et al.  Generalized difference methods for a nonlinear Dirichlet problem , 1987 .

[29]  D. Rose,et al.  Some errors estimates for the box method , 1987 .