A zero forcing technique for bounding sums of eigenvalue multiplicities

Abstract Given a graph G, one may ask: “What sets of eigenvalues are possible over all weighted adjacency matrices of G?” (The weight of an edge is positive or negative, while the diagonal entries can be any real numbers.) This is known as the Inverse Eigenvalue Problem for graphs (IEPG). A mild relaxation of this question considers the multiplicity list instead of the exact eigenvalues themselves. That is, given a graph G on n vertices and an ordered partition m = ( m 1 , … , m l ) of n, is there a weighted adjacency matrix where the i-th distinct eigenvalue has multiplicity m i ? This is known as the ordered multiplicity IEPG. Recent work solved the ordered multiplicity IEPG for all graphs on 6 vertices. In this work, we develop zero forcing methods for the ordered multiplicity IEPG in a multitude of different contexts. Namely, we utilize zero forcing parameters on powers of graphs to achieve bounds on consecutive multiplicities. We are able to provide general bounds on sums of multiplicities of eigenvalues for graphs. This includes new bounds on the sums of multiplicities of consecutive eigenvalues as well as more specific bounds for trees. Using these results, we verify the previous results above regarding the IEPG on six vertices. In addition, applying our techniques to skew-symmetric matrices, we are able to determine all possible ordered multiplicity lists for skew-symmetric matrices for connected graphs on five vertices.

[1]  Linh T. Duong,et al.  Maximum nullity and zero forcing of circulant graphs , 2019, Special Matrices.

[2]  Beth Bjorkman,et al.  Applications of analysis to the determination of the minimum number of distinct eigenvalues of a graph , 2017, 1708.01821.

[3]  Shaun M. Fallat,et al.  The minimum rank of symmetric matrices described by a graph: A survey☆ , 2007 .

[4]  Shaun M. Fallat,et al.  On the minimum rank of not necessarily symmetric matrices : a preliminary study , 2009 .

[5]  Leslie Hogben,et al.  Note on positive semidefinite maximum nullity and positive semidefinite zero forcing number of partial 2-trees , 2012 .

[6]  Warren E. Ferguson,et al.  The construction of Jacobi and periodic Jacobi matrices with prescribed spectra , 1980 .

[7]  Joyati Debnath,et al.  Minimum rank of skew-symmetric matrices described by a graph , 2010 .

[8]  Pauline van den Driessche,et al.  Parameters Related to Tree‐Width, Zero Forcing, and Maximum Nullity of a Graph , 2013, J. Graph Theory.

[9]  Shaun M. Fallat,et al.  ON TWO CONJECTURES REGARDING AN INVERSE EIGENVALUE PROBLEM FOR ACYCLIC SYMMETRIC MATRICES , 2004 .

[10]  Daniela Ferrero,et al.  Rigid Linkages and Partial Zero Forcing , 2018, Electron. J. Comb..

[11]  Yair Caro,et al.  Upper bounds on the k-forcing number of a graph , 2014, Discret. Appl. Math..

[12]  K. H. Monfared,et al.  Spectral characterization of matchings in graphs , 2016, 1602.03590.

[13]  Leslie Hogben Zero forcing and maximum nullity for hypergraphs , 2020, Discret. Appl. Math..

[14]  Rosário Fernandes,et al.  The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles , 2009 .

[15]  Shaun M. Fallat,et al.  Minimum number of distinct eigenvalues of graphs , 2013, 1304.1205.

[16]  L. Hogben,et al.  Techniques for determining the minimum rank of a small graph , 2010 .

[17]  Miroslav Fiedler,et al.  A characterization of tridiagonal matrices , 1969 .

[18]  Hong-Gwa Yeh,et al.  On minimum rank and zero forcing sets of a graph , 2010 .

[19]  J. Lin Odd Cycle Zero Forcing Parameters and the Minimum Rank of Graph Blowups , 2016 .

[20]  Shaun M. Fallat,et al.  Zero forcing parameters and minimum rank problems , 2010, 1003.2028.

[21]  Tianyi Yang,et al.  The combinatorial inverse eigenvalue problem II: all cases for small graphs , 2014 .

[22]  Robin J. Wilson,et al.  An Atlas of Graphs , 1999 .

[23]  Michael A. Henning,et al.  Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..

[24]  Shaun M. Fallat,et al.  Generalizations of the Strong Arnold Property and the Minimum Number of Distinct Eigenvalues of a Graph , 2015, Electron. J. Comb..

[25]  Steve Butler,et al.  Using variants of zero forcing to bound the inertia set of a graph , 2015 .

[26]  W. Watkins The cone of positive generalized matrix functions , 1993 .

[27]  da Fonseca A lower bound for the number of distinct eigenvalues of some real symmetric matrices , 2010 .

[28]  Shaun M. Fallat,et al.  The inverse eigenvalue problem of a graph: Multiplicities and minors , 2017, J. Comb. Theory, Ser. B.

[29]  W. Haemers Zero forcing sets and minimum rank of graphs , 2008 .

[30]  Michael C. Wigal,et al.  Ordered multiplicity inverse eigenvalue problem for graphs on six vertices , 2017, 1708.02438.

[31]  Joseph S. Alameda,et al.  Families of graphs with maximum nullity equal to zero forcing number , 2018 .

[32]  L. Hogben Minimum Rank Problems , 2010 .

[33]  A. Berman,et al.  Zero forcing for sign patterns , 2013, 1307.2198.

[34]  Charles R. Johnson,et al.  The Parter-Wiener Theorem: Refinement and Generalization , 2003, SIAM J. Matrix Anal. Appl..