A zero forcing technique for bounding sums of eigenvalue multiplicities
暂无分享,去创建一个
[1] Linh T. Duong,et al. Maximum nullity and zero forcing of circulant graphs , 2019, Special Matrices.
[2] Beth Bjorkman,et al. Applications of analysis to the determination of the minimum number of distinct eigenvalues of a graph , 2017, 1708.01821.
[3] Shaun M. Fallat,et al. The minimum rank of symmetric matrices described by a graph: A survey☆ , 2007 .
[4] Shaun M. Fallat,et al. On the minimum rank of not necessarily symmetric matrices : a preliminary study , 2009 .
[5] Leslie Hogben,et al. Note on positive semidefinite maximum nullity and positive semidefinite zero forcing number of partial 2-trees , 2012 .
[6] Warren E. Ferguson,et al. The construction of Jacobi and periodic Jacobi matrices with prescribed spectra , 1980 .
[7] Joyati Debnath,et al. Minimum rank of skew-symmetric matrices described by a graph , 2010 .
[8] Pauline van den Driessche,et al. Parameters Related to Tree‐Width, Zero Forcing, and Maximum Nullity of a Graph , 2013, J. Graph Theory.
[9] Shaun M. Fallat,et al. ON TWO CONJECTURES REGARDING AN INVERSE EIGENVALUE PROBLEM FOR ACYCLIC SYMMETRIC MATRICES , 2004 .
[10] Daniela Ferrero,et al. Rigid Linkages and Partial Zero Forcing , 2018, Electron. J. Comb..
[11] Yair Caro,et al. Upper bounds on the k-forcing number of a graph , 2014, Discret. Appl. Math..
[12] K. H. Monfared,et al. Spectral characterization of matchings in graphs , 2016, 1602.03590.
[13] Leslie Hogben. Zero forcing and maximum nullity for hypergraphs , 2020, Discret. Appl. Math..
[14] Rosário Fernandes,et al. The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles , 2009 .
[15] Shaun M. Fallat,et al. Minimum number of distinct eigenvalues of graphs , 2013, 1304.1205.
[16] L. Hogben,et al. Techniques for determining the minimum rank of a small graph , 2010 .
[17] Miroslav Fiedler,et al. A characterization of tridiagonal matrices , 1969 .
[18] Hong-Gwa Yeh,et al. On minimum rank and zero forcing sets of a graph , 2010 .
[19] J. Lin. Odd Cycle Zero Forcing Parameters and the Minimum Rank of Graph Blowups , 2016 .
[20] Shaun M. Fallat,et al. Zero forcing parameters and minimum rank problems , 2010, 1003.2028.
[21] Tianyi Yang,et al. The combinatorial inverse eigenvalue problem II: all cases for small graphs , 2014 .
[22] Robin J. Wilson,et al. An Atlas of Graphs , 1999 .
[23] Michael A. Henning,et al. Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..
[24] Shaun M. Fallat,et al. Generalizations of the Strong Arnold Property and the Minimum Number of Distinct Eigenvalues of a Graph , 2015, Electron. J. Comb..
[25] Steve Butler,et al. Using variants of zero forcing to bound the inertia set of a graph , 2015 .
[26] W. Watkins. The cone of positive generalized matrix functions , 1993 .
[27] da Fonseca. A lower bound for the number of distinct eigenvalues of some real symmetric matrices , 2010 .
[28] Shaun M. Fallat,et al. The inverse eigenvalue problem of a graph: Multiplicities and minors , 2017, J. Comb. Theory, Ser. B.
[29] W. Haemers. Zero forcing sets and minimum rank of graphs , 2008 .
[30] Michael C. Wigal,et al. Ordered multiplicity inverse eigenvalue problem for graphs on six vertices , 2017, 1708.02438.
[31] Joseph S. Alameda,et al. Families of graphs with maximum nullity equal to zero forcing number , 2018 .
[32] L. Hogben. Minimum Rank Problems , 2010 .
[33] A. Berman,et al. Zero forcing for sign patterns , 2013, 1307.2198.
[34] Charles R. Johnson,et al. The Parter-Wiener Theorem: Refinement and Generalization , 2003, SIAM J. Matrix Anal. Appl..