On optimal constacyclic codes

In this paper we investigate the class of constacyclic codes, which is a natural generalization of the class of cyclic and negacyclic codes. This class of codes is interesting in the sense that it contains codes with good or even optimal parameters. In this light, we propose constructions of families of classical block and convolutional maximum-distance-separable (MDS) constacyclic codes, as well as families of asymmetric quantum MDS codes derived from (classical-block) constacyclic codes. These results are mainly derived from the investigation of suitable properties on cyclotomic cosets of these corresponding codes.

[1]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[2]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[3]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[4]  M. Mézard,et al.  Asymmetric quantum error-correcting codes , 2006, quant-ph/0606107.

[5]  Giuliano G. La Guardia,et al.  On Negacyclic MDS-Convolutional Codes , 2013, ArXiv.

[6]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[7]  Giuliano G. La Guardia,et al.  Asymmetric quantum codes: new codes from old , 2013, Quantum Information Processing.

[8]  Thomas Blackford Negacyclic duadic codes , 2008, Finite Fields Their Appl..

[9]  M. Rötteler,et al.  Asymmetric quantum codes: constructions, bounds and performance , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[11]  Han Mao Kiah,et al.  Pure Asymmetric Quantum MDS Codes from CSS Construction: A Complete Characterization , 2010, 1006.1694.

[12]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[13]  Giuliano Gadioli La Guardia,et al.  On cyclotomic cosets and code constructions , 2015, ArXiv.

[14]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[15]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[16]  Giuliano G. La Guardia Nonbinary convolutional codes derived from group character codes , 2013, Discret. Math..

[17]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[18]  Saroj Rani,et al.  On constacyclic codes over finite fields , 2015, Cryptography and Communications.

[19]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional Codes Derived From Reed-Solomon and Reed-Muller Codes , 2007, ArXiv.

[20]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[21]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[22]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[23]  Jianzhang Chen,et al.  New Optimal Asymmetric Quantum Codes Derived from Negacyclic Codes , 2014 .

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  Lin-nan Lee,et al.  Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[26]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[27]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[29]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional BCH Codes , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).

[30]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[31]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[32]  Madhu Raka,et al.  A class of constacyclic codes over a finite field-II , 2012, Indian Journal of Pure and Applied Mathematics.

[33]  Giuliano G. La Guardia,et al.  On Classical and Quantum MDS-Convolutional BCH Codes , 2012, IEEE Transactions on Information Theory.