Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns

This work presents a route to fabricate micropatterned conductive structures where the conductors are monolithically integrated with nanocellulose-based paper. To fabricate conductive features, mic ...

[1]  Martti Toivakka,et al.  IR-sintering of ink-jet printed metal-nanoparticles on paper , 2012 .

[2]  Sunghan Kim,et al.  Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. , 2017, Chemical reviews.

[3]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[4]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[5]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[6]  Ann Marie Sastry,et al.  Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials , 2004 .

[7]  Yoshihide Fujisaki,et al.  Transparent Nanopaper‐Based Flexible Organic Thin‐Film Transistor Array , 2014 .

[8]  T. Peijs,et al.  Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper , 2017, Journal of Materials Science.

[9]  Xianjie Liu,et al.  An Organic Mixed Ion–Electron Conductor for Power Electronics , 2015, Advanced science.

[10]  Zhiqiang Fang,et al.  Transparent paper: fabrications, properties, and device applications , 2014 .

[11]  Jie Xu,et al.  Recent Advancements in Functionalized Paper-Based Electronics. , 2016, ACS applied materials & interfaces.

[12]  G. Jabbour,et al.  Recent developments and directions in printed nanomaterials. , 2015, Nanoscale.

[13]  Akira Isogai,et al.  Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. , 2013, Biomacromolecules.

[14]  Jooho Moon,et al.  Nanosized Glass Frit as an Adhesion Promoter for Ink‐Jet Printed Conductive Patterns on Glass Substrates Annealed at High Temperatures , 2008 .

[15]  Julien Bras,et al.  Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing , 2017 .

[16]  R. Österbacka,et al.  Paper Electronics , 2011, Advanced materials.

[17]  Z. Bao,et al.  A review of fabrication and applications of carbon nanotube film-based flexible electronics. , 2013, Nanoscale.

[18]  J. Bras,et al.  Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films , 2016 .

[19]  Terence G. Henares,et al.  Paper-based inkjet-printed microfluidic analytical devices. , 2015, Angewandte Chemie.

[20]  Janos Vörös,et al.  Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics , 2016, Scientific Reports.

[21]  R. Dahiya,et al.  Printable stretchable interconnects , 2017 .

[22]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[23]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[24]  Zhiqiang Fang,et al.  Highly thermally conductive papers with percolative layered boron nitride nanosheets. , 2014, ACS nano.

[25]  Wei Lin,et al.  Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics , 2011, Advanced materials.

[26]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[27]  Katsuaki Suganuma,et al.  A Miniaturized Flexible Antenna Printed on a High Dielectric Constant Nanopaper Composite , 2015, Advanced materials.

[28]  A. Sastry,et al.  Statistical geometry of random fibrous networks, revisited: Waviness, dimensionality, and percolation , 2004 .

[29]  Liangbing Hu,et al.  Transparent nanopaper with tailored optical properties. , 2013, Nanoscale.

[30]  G. Whitesides,et al.  Foldable Printed Circuit Boards on Paper Substrates , 2010 .

[31]  S. B. Lindström,et al.  Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. , 2017, Nano letters.

[32]  Jacob J. Adams,et al.  Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. , 2015, Small.

[33]  Daniel A. Steingart,et al.  A flexible high potential printed battery for powering printed electronics , 2013 .

[34]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[35]  Julien Bras,et al.  Use of nanocellulose in printed electronics: a review. , 2016, Nanoscale.

[36]  M. T. Fernández-Abedul,et al.  Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices. , 2016, Lab on a chip.

[37]  J. Vörös,et al.  Fast and Efficient Fabrication of Intrinsically Stretchable Multilayer Circuit Boards by Wax Pattern Assisted Filtration , 2015, Small.

[38]  S. Magdassi,et al.  Conductive nanomaterials for printed electronics. , 2014, Small.

[39]  Alexandra Inberg,et al.  Disposable electrochemical sensor prepared using 3D printing for cell and tissue diagnostics , 2015 .

[40]  L. Nyholm,et al.  A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood , 2010, The journal of physical chemistry. B.

[41]  Zhenyuan Zhang,et al.  Size-dependent melting of silica-encapsulated gold nanoparticles. , 2002, Journal of the American Chemical Society.

[42]  M. Hsieh,et al.  Electrically conductive lines on cellulose nanopaper for flexible electrical devices. , 2013, Nanoscale.

[43]  R. Mülhaupt,et al.  Emulsifier‐Free Graphene Dispersions with High Graphene Content for Printed Electronics and Freestanding Graphene Films , 2012 .

[44]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[45]  Yuanyuan Song,et al.  Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. , 2015, Nanoscale.

[46]  Arben Merkoçi,et al.  Nanopaper as an Optical Sensing Platform. , 2015, ACS nano.

[47]  Chem. , 2020, Catalysis from A to Z.

[48]  Alar Ainla,et al.  Integrating Electronics and Microfluidics on Paper , 2016, Advanced materials.

[49]  Chao Xie,et al.  Flexible Photodetectors Based on Novel Functional Materials. , 2017, Small.

[50]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[51]  Vincent M. Rotello,et al.  Polymer‐Mediated Nanoparticle Assembly: Structural Control and Applications , 2005 .

[52]  Hongli Zhu,et al.  Highly transparent and flexible nanopaper transistors. , 2013, ACS nano.

[53]  K. Suganuma,et al.  Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics , 2014 .

[54]  N D Robinson,et al.  Organic materials for printed electronics. , 2007, Nature materials.

[55]  Andong Liu,et al.  Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. , 2010, Biomacromolecules.

[56]  L. Wågberg,et al.  Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties , 2018 .

[57]  B. Ooi,et al.  Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. , 2016, Nanoscale.

[58]  L. Francis,et al.  Gravure Printing of Graphene for Large‐area Flexible Electronics , 2014, Advanced materials.

[59]  M. Nogi,et al.  Transparent Conductive Nanofiber Paper for Foldable Solar Cells , 2015, Scientific Reports.

[60]  J. Lewis,et al.  Pen‐on‐Paper Flexible Electronics , 2011, Advanced materials.

[61]  Yi Cui,et al.  Metal nanogrids, nanowires, and nanofibers for transparent electrodes , 2011 .

[62]  Lars Wågberg,et al.  Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. , 2014, ACS nano.

[63]  R. C. Picu Mechanics of random fiber networks—a review , 2011 .

[64]  Mark C Hersam,et al.  All‐Printed, Foldable Organic Thin‐Film Transistors on Glassine Paper , 2015, Advanced materials.