Antibacterial bone adhesive cement for preventing sternal infections after cardiac surgery

[1]  H. Parlakpınar,et al.  Fast Curing Multifunctional Tissue Adhesives of Sericin-Based Polyurethane-Acrylates for Sternal Closure , 2022, ACS applied materials & interfaces.

[2]  R. Tsuyuki,et al.  Topical Vancomycin and Risk of Sternal Wound Infections: A Double-Blind Randomized Controlled Trial , 2021, Annals of Thoracic Surgery.

[3]  V. Ghate,et al.  Breaking the barriers for the delivery of amikacin: Challenges, strategies, and opportunities. , 2021, Life Science.

[4]  P. Varma,et al.  Recent developments in controlling sternal wound infection after cardiac surgery and measures to enhance sternal healing , 2020, Medicinal research reviews.

[5]  Jayakumar Rangasamy,et al.  Antibacterial, anti-biofilm and angiogenic calcium sulfate-nano MgO composite bone void fillers for inhibiting Staphylococcus aureus infections , 2020 .

[6]  D. Menon,et al.  Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. , 2020, Biomaterials science.

[7]  K. Mirica,et al.  Identification of a calcium phosphoserine coordination network in an adhesive organo-apatitic bone cement system. , 2020, Acta biomaterialia.

[8]  N. Hwang,et al.  Deep Sternal Wound Infection: Diagnosis, Treatment and Prevention. , 2020, Journal of cardiothoracic and vascular anesthesia.

[9]  Michael Pujari-Palmer,et al.  Phosphoserine Functionalized Cements Preserve Metastable Phases, and Reprecipitate Octacalcium Phosphate, Hydroxyapatite, Dicalcium Phosphate, and Amorphous Calcium Phosphate, during Degradation, In Vitro , 2019, Journal of functional biomaterials.

[10]  A. Harky,et al.  Sternal Wound Infections, Risk Factors and Management - How Far Are We? A Literature Review. , 2019, Heart, lung & circulation.

[11]  Nathaniel S. Hwang,et al.  Bioactive calcium phosphate materials and applications in bone regeneration , 2019, Biomaterials Research.

[12]  R. Jayakumar,et al.  Ciprofloxacin- and Fluconazole-Containing Fibrin-Nanoparticle-Incorporated Chitosan Bandages for the Treatment of Polymicrobial Wound Infections. , 2018, ACS applied bio materials.

[13]  David L. Cochran,et al.  From bench-to-bedside: Licensing and development of a mineral-organic bone adhesive for bone repair , 2019 .

[14]  P. Fournier,et al.  Mediastinitis in the ICU patient: a narrative review. , 2019, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[15]  F. Othman,et al.  In vivo efficacy of tobramycin-loaded synthetic calcium phosphate beads in a rabbit model of staphylococcal osteomyelitis , 2018, Annals of Clinical Microbiology and Antimicrobials.

[16]  Jianxun Ding,et al.  Calcium Phosphate Cement loaded with 10% vancomycin delivering high early and late local antibiotic concentration in vitro. , 2018, Orthopaedics & traumatology, surgery & research : OTSR.

[17]  M. Chan,et al.  Current perspectives on diagnosis and management of sternal wound infections , 2018, Infection and drug resistance.

[18]  Ken Gall,et al.  Bioinspired Mineral–Organic Bioresorbable Bone Adhesive , 2018, Advanced healthcare materials.

[19]  M. Doble,et al.  Drug and ion releasing tetracalcium phosphate based dual action cement for regenerative treatment of infected bone defects , 2018, Ceramics International.

[20]  P. Varma,et al.  Bioadhesive, Hemostatic, and Antibacterial in Situ Chitin–Fibrin Nanocomposite Gel for Controlling Bleeding and Preventing Infections at Mediastinum , 2018 .

[21]  W. Haggard,et al.  Local Delivery of Amikacin and Vancomycin from Chitosan Sponges Prevent Polymicrobial Implant-Associated Biofilm. , 2018, Military medicine.

[22]  Ping Wang,et al.  Calcium phosphate cements for bone engineering and their biological properties , 2017, Bone Research.

[23]  P. Schmuki,et al.  Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes. , 2017, International journal of pharmaceutics.

[24]  Rui Zhang,et al.  Preparation and Characterization of Vancomycin-Loaded Electrospun Rana chensinensis Skin Collagen/Poly(L-lactide) Nanofibers for Drug Delivery , 2016 .

[25]  S. Yuan Sternal mycobacterial infections , 2016, Annals of Thoracic Medicine.

[26]  V. Uskoković,et al.  Self-Setting Calcium Phosphate Cements with Tunable Antibiotic Release Rates for Advanced Antimicrobial Applications. , 2016, ACS applied materials & interfaces.

[27]  Y. Yazdanpanah,et al.  Sternal Wound Infection after Cardiac Surgery: Management and Outcome , 2015, PloS one.

[28]  W. Haggard,et al.  Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm , 2015, Clinical orthopaedics and related research.

[29]  J. Stążka,et al.  Gentamicin-impregnated collagen sponge for preventing sternal wound infection after cardiac surgery , 2014, Kardiochirurgia i torakochirurgia polska = Polish journal of cardio-thoracic surgery.

[30]  M. Gallignani,et al.  Reagent-free determination of amikacin content in amikacin sulfate injections by FTIR derivative spectroscopy in a continuous flow system , 2013, Journal of Pharmaceutical Analysis.

[31]  Zhengpeng Yang,et al.  Synthesis and mechanism of tetracalcium phosphate from nanocrystalline precursor , 2014 .

[32]  N. Artzi,et al.  Ceftobiprole medocaril is an effective treatment against methicillin-resistant Staphylococcus aureus (MRSA) mediastinitis in a rat model , 2014, European Journal of Clinical Microbiology & Infectious Diseases.

[33]  B. Leclère,et al.  Epidemiology and prevention of surgical site infections after cardiac surgery. , 2013, Medecine et maladies infectieuses.

[34]  Y. Sakamoto,et al.  Mechanical Strength and In Vitro Antibiotic Release Profile of Antibiotic-Loaded Calcium Phosphate Bone Cement , 2013, The Journal of craniofacial surgery.

[35]  S. Kunal,et al.  Mediastinitis in cardiac surgery: A review of the literature , 2012 .

[36]  T. Kissel,et al.  The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[37]  H. Cabral,et al.  The Effect of Topical Vancomycin Applied to Sternotomy Incisions on Postoperative Serum Vancomycin Levels , 2011, Journal of cardiac surgery.

[38]  D. Muehrcke,et al.  Calcium phosphate cements improve bone density when used in osteoporotic sternums. , 2009, The Annals of thoracic surgery.

[39]  Y. Carmeli,et al.  Staphylococcus aureus mediastinitis and sternal osteomyelitis following median sternotomy in a rat model. , 2008, The Journal of antimicrobial chemotherapy.

[40]  D. Muehrcke,et al.  Calcium phosphate cements to control bleeding in osteoporotic sternums. , 2007, The Annals of thoracic surgery.

[41]  N. Sucu,et al.  Comparison and evaluation of experimental mediastinitis models: precolonized foreign body implants and bacterial suspension inoculation seems promising , 2006, BMC infectious diseases.

[42]  V. Topkara,et al.  Topical versus systemic vancomycin for deep sternal wound infection caused by methicillin-resistant Staphylococcus aureus in a rodent experimental model. , 2006, Texas Heart Institute journal.

[43]  J. Vaage,et al.  Postoperative mediastinitis in cardiac surgery - microbiology and pathogenesis. , 2002, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[44]  A. Fokin,et al.  Sternal Instability After Midline Sternotomy , 2000, The Thoracic and cardiovascular surgeon.

[45]  M. Borger,et al.  Deep sternal wound infection: risk factors and outcomes. , 1998, The Annals of thoracic surgery.

[46]  A. Amin,et al.  Acetylacetone-formaldehyde reagent for the spectrophotometric determination of some sulfa drugs in pure and dosage forms , 1996 .

[47]  R. El Oakley,et al.  Postoperative mediastinitis: classification and management. , 1996, The Annals of thoracic surgery.

[48]  V. Gott,et al.  Mediastinal infection after cardiac surgery. , 1984, The Annals of thoracic surgery.