Deep Insights into Convolutional Networks for Video Recognition

[1]  Graham W. Taylor,et al.  Adversarial Training Versus Weight Decay , 2018, ArXiv.

[2]  Andrew Zisserman,et al.  What have We Learned from Deep Representations for Action Recognition? , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[3]  Li Fei-Fei,et al.  Progressive Neural Architecture Search , 2017, ECCV.

[4]  Richard P. Wildes,et al.  Spatiotemporal Multiplier Networks for Video Action Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Andrew Zisserman,et al.  Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Bolei Zhou,et al.  Network Dissection: Quantifying Interpretability of Deep Visual Representations , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Yoshua Bengio,et al.  Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Richard P. Wildes,et al.  Spatiotemporal Residual Networks for Video Action Recognition , 2016, NIPS.

[9]  Andrea Vedaldi,et al.  Salient Deconvolutional Networks , 2016, ECCV.

[10]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[11]  Luc Van Gool,et al.  Temporal Segment Networks: Towards Good Practices for Deep Action Recognition , 2016, ECCV.

[12]  Zhe L. Lin,et al.  Top-Down Neural Attention by Excitation Backprop , 2016, International Journal of Computer Vision.

[13]  Thomas Brox,et al.  Synthesizing the preferred inputs for neurons in neural networks via deep generator networks , 2016, NIPS.

[14]  Andrew Zisserman,et al.  Convolutional Two-Stream Network Fusion for Video Action Recognition , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[16]  Thomas Brox,et al.  Generating Images with Perceptual Similarity Metrics based on Deep Networks , 2016, NIPS.

[17]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Andrea Vedaldi,et al.  Visualizing Deep Convolutional Neural Networks Using Natural Pre-images , 2015, International Journal of Computer Vision.

[20]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[22]  Richard P. Wildes,et al.  Dynamically encoded actions based on spacetime saliency , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Jonathan Tompson,et al.  Unsupervised Feature Learning from Temporal Data , 2015, ICLR.

[24]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[25]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[26]  Bolei Zhou,et al.  Object Detectors Emerge in Deep Scene CNNs , 2014, ICLR.

[27]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[28]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[29]  Jason Yosinski,et al.  Deep neural networks are easily fooled: High confidence predictions for unrecognizable images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[31]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[33]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[34]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[35]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[36]  Cordelia Schmid,et al.  Action Recognition with Improved Trajectories , 2013, 2013 IEEE International Conference on Computer Vision.

[37]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[38]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[39]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[40]  Thomas Serre,et al.  HMDB: A large video database for human motion recognition , 2011, 2011 International Conference on Computer Vision.

[41]  Thomas S. Huang,et al.  Non-Local Kernel Regression for Image and Video Restoration , 2010, ECCV.

[42]  Cordelia Schmid,et al.  A Spatio-Temporal Descriptor Based on 3D-Gradients , 2008, BMVC.

[43]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[44]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[45]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[46]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[47]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[48]  Thomas V. Papathomas,et al.  Double opponency as a generalized concept in texture segregation illustrated with stimuli defined by color, luminance, and orientation , 1993 .

[49]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[50]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[52]  S. Klein,et al.  Opponent-movement mechanisms in human vision. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[53]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[55]  T. Poggio,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 1979, Biological Cybernetics.

[56]  P Gouras,et al.  Opponent‐colour cells in different layers of foveal striate cortex , 1974, The Journal of physiology.

[57]  Alexander Mordvintsev,et al.  Inceptionism: Going Deeper into Neural Networks , 2015 .

[58]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[59]  Werner Reichardt,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 2004, Biological Cybernetics.

[60]  N. Kanwisher,et al.  Activation in Human MT/MST by Static Images with Implied Motion , 2000, Journal of Cognitive Neuroscience.

[61]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.