Robust reconstruction of the discrete state for a class of nonlinear uncertain switched systems

Abstract This paper presents an approach to the robust state reconstruction for a class of nonlinear switched systems affected by model uncertainties. Under the assumption that the continuous state is available for measurement, an approach is presented based on concepts and methodologies derived from the sliding mode control theory. With noise-free state measurements, the time needed for reconstructing the discrete state after a transition can be made arbitrarily small by sufficiently increasing a certain observer tuning parameter. Simulations and experiments, carried out on a three-tank laboratory setup, are presented and commented.

[1]  R. Hirschorn Invertibility of multivariable nonlinear control systems , 1979 .

[2]  Giorgio Bartolini,et al.  An improved second-order sliding-mode control scheme robust against the measurement noise , 2004, IEEE Transactions on Automatic Control.

[3]  Daniel Liberzon,et al.  On Invertibility of Switched Linear Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[4]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[5]  Sarah K. Spurgeon,et al.  Sliding mode observers for fault detection and isolation , 2000, Autom..

[6]  Dominique Sauter,et al.  Nonlinear filter design for fault diagnosis: application to the three-tank system , 2005 .

[7]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[8]  Antonella Ferrara,et al.  Output tracking control of uncertain nonlinear second-order systems , 1997, Autom..

[9]  Donghua Zhou,et al.  Robust state estimation and fault diagnosis for uncertain hybrid nonlinear systems , 2007 .

[10]  Magnus Egerstedt,et al.  On the observability of piecewise linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[11]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[12]  Antonella Ferrara,et al.  On the convergence properties of a 2-sliding control algorithm for non-linear uncertain systems , 2001 .

[13]  Angelo Alessandri,et al.  Design of Luenberger Observers for a Class of Hybrid Linear Systems , 2001, HSCC.

[14]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[15]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[16]  Alessandro Giua,et al.  Marking Estimation of Petri Nets With Silent Transitions , 2007, IEEE Transactions on Automatic Control.

[17]  Arjan van der Schaft,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[18]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[19]  Alessandro Giua,et al.  Marking estimation of Petri nets with silent transitions , 2004 .

[20]  Alessandro Giua,et al.  Observability of place/transition nets , 2002, IEEE Trans. Autom. Control..

[21]  C.N. Hadjicostis,et al.  Designing Stable Inverters and State Observers for Switched Linear Systems with Unknown Inputs , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[22]  Antonella Ferrara,et al.  On second order sliding mode controllers , 1998 .

[23]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[24]  Giorgio Bartolini,et al.  Global stabilization for nonlinear uncertain systems with unmodeled actuator dynamics , 2001, IEEE Trans. Autom. Control..

[25]  Salim Chaib,et al.  Invertibility of switched nonlinear systems. Application to missile faults reconstruction. , 2007, 2007 46th IEEE Conference on Decision and Control.

[26]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[27]  G. Bartolini,et al.  Modern sliding mode control theory : new perspectives and applications , 2008 .

[28]  Maria Domenica Di Benedetto,et al.  Discrete state observability of hybrid systems , 2009 .

[29]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[30]  Christopher Edwards,et al.  Nonlinear robust fault reconstruction and estimation using a sliding mode observer , 2007, Autom..

[31]  L. Fridman,et al.  Exact state estimation for linear systems with unknown inputs based on hierarchical super‐twisting algorithm , 2007 .

[32]  Alexander S. Poznyak,et al.  Unknown Input and State Estimation for Unobservable Systems , 2009, SIAM J. Control. Optim..

[33]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[34]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[35]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[36]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[37]  Daniel Liberzon,et al.  Invertibility of nonlinear switched systems , 2008, 2008 47th IEEE Conference on Decision and Control.