Population Genomic Inferences from Sparse High-Throughput Sequencing of Two Populations of Drosophila melanogaster

Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2× coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.

[1]  Robert C. Edgar,et al.  Improved repeat identification and masking in Dipterans. , 2007, Gene.

[2]  H. A. Orr,et al.  Haldane's sieve and adaptation from the standing genetic variation. , 2001, Genetics.

[3]  Kevin R. Thornton,et al.  Multilocus patterns of nucleotide variability and the demographic and selection history of Drosophila melanogaster populations. , 2005, Genome research.

[4]  S. Mousset,et al.  Molecular Polymorphism in Drosophila Melanogaster and D. Simulans: what have we Learned from Recent Studies? , 2004, Genetica.

[5]  X. Maside,et al.  The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster. , 2004, Genetical research.

[6]  Gerald M Rubin,et al.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.

[7]  P. Andolfatto Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. , 2001, Molecular biology and evolution.

[8]  Francisco M. De La Vega,et al.  Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. , 2008, Genome research.

[9]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[10]  A. Caballero,et al.  On the effective size of populations with separate sexes, with particular reference to sex-linked genes. , 1995, Genetics.

[11]  E. Branscomb,et al.  On the High Value of Low Standards , 2002, Journal of bacteriology.

[12]  M. W. Young,et al.  Middle repetitive DNA: a fluid component of the Drosophila genome. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Ludwig,et al.  Divergent and conserved features in the spatial expression of the Drosophila pseudoobscura esterase-5B gene and the esterase-6 gene of Drosophila melanogaster. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Wall,et al.  Testing models of selection and demography in Drosophila simulans. , 2002, Genetics.

[15]  C. Mungall,et al.  The Release 5.1 Annotation of Drosophila melanogaster Heterochromatin , 2007, Science.

[16]  G. Marth,et al.  Pyrobayes: an improved base caller for SNP discovery in pyrosequences , 2008, Nature Methods.

[17]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[18]  G. Rubin,et al.  Drosophila genome organization: conserved and dynamic aspects. , 1981, Annual review of genetics.

[19]  D. Begun,et al.  Reduced X-linked nucleotide polymorphism in Drosophila simulans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Colin N. Dewey,et al.  Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans , 2007, PLoS biology.

[21]  Kevin R. Thornton,et al.  Nucleotide variation and recombination along the fourth chromosome in Drosophila simulans. , 2004, Genetics.

[22]  D. Tautz,et al.  Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. , 1997, Genetics.

[23]  C. Cameron Testing the Models , 2000 .

[24]  R. Richmond,et al.  Physiology, Biochemistry and Molecular Biology of the Est-6 Locus in Drosophila melanogaster , 1990 .

[25]  R. Redon,et al.  Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes , 2007, Science.

[26]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[27]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[28]  Carlos D Bustamante,et al.  Ascertainment bias in studies of human genome-wide polymorphism. , 2005, Genome research.

[29]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[30]  S. Tavaré,et al.  Population Genetic Inference From Resequencing Data , 2009, Genetics.

[31]  C. Schmid,et al.  Interspersion of repetitive and nonrepetitive DNA sequences in the Drosophila melanogaster genome , 1975, Cell.

[32]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[33]  Robert P. Davey,et al.  Population genomics of domestic and wild yeasts , 2008, Nature.

[34]  W. Stephan,et al.  Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. , 2005, Molecular biology and evolution.

[35]  John Maynard Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[36]  E. Lander,et al.  Genomic mapping by fingerprinting random clones: a mathematical analysis. , 1988, Genomics.

[37]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[38]  D. Hartl,et al.  A portrait of copy-number polymorphism in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[39]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[40]  Michael Lynch,et al.  Estimation of Allele Frequencies From High-Coverage Genome-Sequencing Projects , 2009, Genetics.

[41]  J. Ajioka,et al.  Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. , 1991, Genetics.

[42]  W. Stephan,et al.  Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach. , 2003, Genetics.

[43]  C. Aquadro,et al.  Rates of DNA sequence evolution are not sex-biased in Drosophila melanogaster and D. simulans. , 1997, Molecular biology and evolution.

[44]  M. Ludwig,et al.  Localization of sequences controlling the spatial, temporal, and sex-specific expression of the esterase 6 locus in Drosophila melanogaster adults. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Charlesworth,et al.  Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over , 2007, Genome Biology.

[46]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[47]  Michael Ashburner,et al.  Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome , 2006, Genome Biology.

[48]  J. Barker,et al.  Ecological and Evolutionary Genetics of Drosophila , 1990, Monographs in Evolutionary Biology.

[49]  Justin O. Borevitz,et al.  Natural Selection Shapes Genome-Wide Patterns of Copy-Number Polymorphism in Drosophila melanogaster , 2008, Science.

[50]  Anna-Sophie Fiston-Lavier,et al.  A model of segmental duplication formation in Drosophila melanogaster. , 2007, Genome research.

[51]  K. Wetterstrand,et al.  Genetic variation and differentiation at microsatellite loci in Drosophila simulans. Evidence for founder effects in new world populations. , 1998, Genetics.

[52]  N L Kaplan,et al.  The "hitchhiking effect" revisited. , 1989, Genetics.

[53]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[54]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[55]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[56]  A. E. Hirsh,et al.  Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. , 2003, Molecular biology and evolution.

[57]  Joshua L. Goodman,et al.  FlyBase: integration and improvements to query tools , 2007, Nucleic Acids Res..

[58]  Jeffrey R. Powell,et al.  Progress and Prospects in Evolutionary Biology: The Drosophila Model , 1997 .

[59]  Kevin R. Thornton,et al.  Retroposed new genes out of the X in Drosophila. , 2002, Genome research.

[60]  C. Aquadro,et al.  African and North American populations of Drosophila melanogaster are very different at the DNA level , 1993, Nature.

[61]  D. Petrov,et al.  Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome , 2005, BMC Biology.

[62]  M. Aguadé,et al.  Detecting the footprint of positive selection in a european population of Drosophila melanogaster: multilocus pattern of variation and distance to coding regions. , 2004, Genetics.

[63]  Peter Andolfatto,et al.  Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. , 2007, Genome research.

[64]  C. Vieira,et al.  What transposable elements tell us about genome organization and evolution: the case of Drosophila , 2005, Cytogenetic and Genome Research.

[65]  D. Halligan,et al.  Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. , 2006, Genome research.

[66]  R. Kulathinal,et al.  Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence , 2008, Proceedings of the National Academy of Sciences.

[67]  H. A. Orr,et al.  A Pseudohitchhiking Model of X vs. Autosomal Diversity , 2004, Genetics.

[68]  D. Petrov,et al.  Similar Levels of X-linked and Autosomal Nucleotide Variation in African and non-African populations of Drosophila melanogaster , 2007, BMC Evolutionary Biology.

[69]  Kevin R. Thornton,et al.  Nucleotide Variation Along the Drosophila melanogaster Fourth Chromosome , 2002, Science.

[70]  B. Charlesworth Background selection and patterns of genetic diversity in Drosophila melanogaster. , 1996, Genetical research.

[71]  Yumei Li,et al.  High-Throughput Multiplex Sequencing to Discover Copy Number Variants in Drosophila , 2009, Genetics.

[72]  P. Andolfatto Adaptive evolution of non-coding DNA in Drosophila , 2005, Nature.

[73]  M. Kreitman,et al.  Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster , 1983, Nature.

[74]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[75]  W. Stephan,et al.  Distinctly Different Sex Ratios in African and European Populations of Drosophila melanogaster Inferred From Chromosomewide Single Nucleotide Polymorphism Data , 2007, Genetics.

[76]  M. Kreitman,et al.  Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. , 2001, Genome research.

[77]  Nicholas H. Barton,et al.  The Relative Rates of Evolution of Sex Chromosomes and Autosomes , 1987, The American Naturalist.

[78]  D. Halligan,et al.  Effect of Divergence Time and Recombination Rate on Molecular Evolution of Drosophila INE-1 Transposable Elements and Other Candidates for Neutrally Evolving Sites , 2007, Journal of Molecular Evolution.

[79]  Dmitri A Petrov,et al.  Genomic Heterogeneity of Background Substitutional Patterns in Drosophila melanogaster , 2005, Genetics.

[80]  C. Aquadro,et al.  Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation. , 1994, Genetics.

[81]  J. Jurka,et al.  Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  D. Petrov,et al.  Rapid sequence turnover at an intergenic locus in Drosophila. , 2004, Molecular biology and evolution.

[83]  Gary H Karpen,et al.  Sequence analysis of a functional Drosophila centromere. , 2003, Genome research.

[84]  B. Charlesworth The effect of life-history and mode of inheritance on neutral genetic variability. , 2001, Genetical research.

[85]  G. Rubin,et al.  Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method , 1981, Cell.

[86]  B. Charlesworth,et al.  The pattern of neutral molecular variation under the background selection model. , 1995, Genetics.

[87]  T. Takano-Shimizu Local recombination and mutation effects on molecular evolution in Drosophila. , 1999, Genetics.

[88]  Charlotte N. Henrichsen,et al.  Segmental copy number variation shapes tissue transcriptomes , 2009, Nature Genetics.

[89]  R. Lewontin,et al.  A molecular approach to the study of genic heterozygosity in natural populations. 3. Direct evidence of coadaptation in gene arrangements of Drosophila. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[91]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.

[92]  R. Nielsen,et al.  POPULATION SIZE CHANGES RESHAPE GENOMIC PATTERNS OF DIVERSITY , 2007, Evolution; international journal of organic evolution.

[93]  D. Hartl,et al.  Genome Organization and Gene Expression Shape the Transposable Element Distribution in the Drosophila melanogaster Euchromatin , 2007, PLoS genetics.

[94]  Xabier Bello,et al.  Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes , 2008, Genome Biology.

[95]  R. Nielsen,et al.  The impact of founder events on chromosomal variability in multiply mating species. , 2008, Molecular biology and evolution.

[96]  C. Bergman,et al.  Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[97]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[98]  R. Lewontin,et al.  A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. , 1966, Genetics.

[99]  Gabor T. Marth,et al.  A general approach to single-nucleotide polymorphism discovery , 1999, Nature Genetics.

[100]  Michael Ashburner,et al.  Annotation of the Drosophila melanogaster euchromatic genome: a systematic review , 2002, Genome Biology.

[101]  D. Petrov,et al.  Codon Bias and Noncoding GC Content Correlate Negatively with Recombination Rate on the Drosophila X Chromosome , 2005, Journal of Molecular Evolution.

[102]  D. Weinreich,et al.  Recombination, dominance and selection on amino acid polymorphism in the Drosophila genome: contrasting patterns on the X and fourth chromosomes. , 2003, Genetics.