Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA
暂无分享,去创建一个
Valentin Goranko | Willem Conradie | Dimiter Vakarelov | V. Goranko | Willem Conradie | D. Vakarelov
[1] Valentin Goranko,et al. Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model?theoretic Aspects , 2004, Advances in Modal Logic.
[2] Frank Wolter,et al. Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.
[3] A. Arnold,et al. Rudiments of μ-calculus , 2001 .
[4] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[5] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[6] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[7] Valentin Goranko,et al. Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..
[8] Valentin Goranko,et al. IV. Semantic extensions of SQEMA , 2008, J. Appl. Non Class. Logics.
[9] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[10] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[11] Andrzej Szalas. On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..
[12] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[13] Dov M. Gabbay,et al. Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.
[14] R. Lyndon. PROPERTIES PRESERVED UNDER HOMOMORPHISM , 1959 .
[15] Maarten de Rijke,et al. Simulating Without Negation , 1997, J. Log. Comput..
[16] Valentin Goranko,et al. Model theory of modal logic , 2007, Handbook of Modal Logic.
[17] Valentin Goranko,et al. Mathematical Logic , 2003 .
[18] Martin Otto,et al. The Boundedness Problem for Monadic Universal First-Order Logic , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[19] Andrew M. Pitts,et al. On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.
[20] Jörg Flum,et al. Finite model theory , 1995, Perspectives in Mathematical Logic.
[21] Joseph Y. Halpern,et al. A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief , 1992, Artif. Intell..
[22] Colin Stirling,et al. Handbook of Modal Logic , 2007 .
[23] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[24] H. Rasiowa,et al. Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .
[25] Valentin Goranko,et al. SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.
[26] A. Visser. Uniform interpolation and layered bisimulation , 1996 .
[27] Jean-Marie Le Bars,et al. The 0-1 law fails for frame satisfiability of propositional modal logic , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.
[28] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[29] A. Szałas,et al. A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .
[30] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[31] R. Labrecque. The Correspondence Theory , 1978 .
[32] Maarten Marx,et al. The Computational Complexity of Hybrid Temporal Logics , 2000, Log. J. IGPL.
[33] Valentin Goranko,et al. Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..
[34] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[35] Leonid Libkin,et al. Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.
[36] Andreas Blass,et al. A Zero-One Law for Logic with a Fixed-Point Operator , 1986, Inf. Control..
[37] Johan van Benthem,et al. Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.
[38] Johan van Benthem,et al. Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.
[39] Valentin Goranko,et al. Algorithmic Correspondence and Completeness in Modal Logic. III. Extensions of the Algorithm SQEMA with Substitutions , 2009, Fundam. Informaticae.
[40] Ulrike Sattler,et al. The Hybrid µ-Calculus , 2001, IJCAR.
[41] Willem Conradie,et al. On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.
[42] Dimiter Vakarelov. Modal Definability in Languages with a Finite Number of Propositional Variables and a New Extension of the Sahlqvist's Class , 2002, Advances in Modal Logic.
[43] Valentin Goranko,et al. Sahlqvist Formulas Unleashed in Polyadic Modal Languages , 2000, Advances in Modal Logic.
[44] J. Flum. On the (infinite) model theory of fixed-point logics , 1995 .
[45] Igor Walukiewicz,et al. Automata for the Modal mu-Calculus and related Results , 1995, MFCS.
[46] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[47] Lilia Chagrova,et al. An undecidable problem in correspondence theory , 1991, Journal of Symbolic Logic.
[48] Wolfram Burgard,et al. ALBERT-LUDWIGS-UNIVERSIT ¨ AT FREIBURG , 2006 .