Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA

In (CON 06b) we introduced the algorithmSQEMA for computing first-order equiv- alents and proving canonicity of modal formulae, and thus es tablished a very general cor- respondence and canonical completeness result. SQEMA is based on transformation rules, the most important of which employs a modal version of a resul t by Ackermann that enables elimination of an existentially quantified predicate variable in a formula, provided a certain negative polarity condition on that variable is satisfied. I this paper we develop several exten- sions of SQEMA where that syntactic condition is replaced by a semantic one , viz. downward monotonicity. For the first, and most general, extensionSemSQEMA we prove correctness for a large class of modal formulae containing an extension o the Sahlqvist formulae, defined by replacing polarity with monotonicity. By employing a spe cial modal version of Lyndon's monotonicity theorem and imposing additional requirement s on the Ackermann rule we obtain restricted versions ofSemSQEMA which guarantee canonicity, too.

[1]  Valentin Goranko,et al.  Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model?theoretic Aspects , 2004, Advances in Modal Logic.

[2]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[3]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[4]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[5]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[6]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[7]  Valentin Goranko,et al.  Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..

[8]  Valentin Goranko,et al.  IV. Semantic extensions of SQEMA , 2008, J. Appl. Non Class. Logics.

[9]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[10]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[11]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..

[12]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[13]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[14]  R. Lyndon PROPERTIES PRESERVED UNDER HOMOMORPHISM , 1959 .

[15]  Maarten de Rijke,et al.  Simulating Without Negation , 1997, J. Log. Comput..

[16]  Valentin Goranko,et al.  Model theory of modal logic , 2007, Handbook of Modal Logic.

[17]  Valentin Goranko,et al.  Mathematical Logic , 2003 .

[18]  Martin Otto,et al.  The Boundedness Problem for Monadic Universal First-Order Logic , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[19]  Andrew M. Pitts,et al.  On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.

[20]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[21]  Joseph Y. Halpern,et al.  A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief , 1992, Artif. Intell..

[22]  Colin Stirling,et al.  Handbook of Modal Logic , 2007 .

[23]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[24]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[25]  Valentin Goranko,et al.  SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.

[26]  A. Visser Uniform interpolation and layered bisimulation , 1996 .

[27]  Jean-Marie Le Bars,et al.  The 0-1 law fails for frame satisfiability of propositional modal logic , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[28]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[29]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[30]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[31]  R. Labrecque The Correspondence Theory , 1978 .

[32]  Maarten Marx,et al.  The Computational Complexity of Hybrid Temporal Logics , 2000, Log. J. IGPL.

[33]  Valentin Goranko,et al.  Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..

[34]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[35]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[36]  Andreas Blass,et al.  A Zero-One Law for Logic with a Fixed-Point Operator , 1986, Inf. Control..

[37]  Johan van Benthem,et al.  Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.

[38]  Johan van Benthem,et al.  Modal Frame Correspondences and Fixed-Points , 2006, Stud Logica.

[39]  Valentin Goranko,et al.  Algorithmic Correspondence and Completeness in Modal Logic. III. Extensions of the Algorithm SQEMA with Substitutions , 2009, Fundam. Informaticae.

[40]  Ulrike Sattler,et al.  The Hybrid µ-Calculus , 2001, IJCAR.

[41]  Willem Conradie,et al.  On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.

[42]  Dimiter Vakarelov Modal Definability in Languages with a Finite Number of Propositional Variables and a New Extension of the Sahlqvist's Class , 2002, Advances in Modal Logic.

[43]  Valentin Goranko,et al.  Sahlqvist Formulas Unleashed in Polyadic Modal Languages , 2000, Advances in Modal Logic.

[44]  J. Flum On the (infinite) model theory of fixed-point logics , 1995 .

[45]  Igor Walukiewicz,et al.  Automata for the Modal mu-Calculus and related Results , 1995, MFCS.

[46]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[47]  Lilia Chagrova,et al.  An undecidable problem in correspondence theory , 1991, Journal of Symbolic Logic.

[48]  Wolfram Burgard,et al.  ALBERT-LUDWIGS-UNIVERSIT ¨ AT FREIBURG , 2006 .