Benzene water interaction: From gaseous dimers to solvated aggregates

Abstract A recent formulation of intermolecular interactions has been adopted to describe the C 6 H 6 –H 2 O system by combining a few interaction components. The pure electrostatic contribution accounts for the quadrupole–dipole interaction and the remaining ones are represented as a combination of effective potential terms, containing one non directly transferable and two transferable parameters. The first one introduces a high flexibility to the potential function and the last ones, well depth and distance at the minimum associated to the different interaction pairs, have a defined physical meaning and are derived by exploiting the decomposability of molecular polarizabilities (without performing any fit). For a given decomposition, the transferable parameters are assumed to have an universal character and, thanks to the flexibility of the function, they may be used to describe the same system in different environments, even when the charge distribution varies. Predicted results for the C 6 H 6 –H 2 O dimer are compared with ab initio calculations. The behavior of benzene solvated by several water molecules is investigated by performing molecular dynamics simulations and the results are relevant to define some basic features of the main solvation shells.

[1]  Cecilia Coletti,et al.  Theoretical study of alkali cation-benzene complexes: potential energy surfaces and binding energies with improved results for rubidium and cesium. , 2006, The journal of physical chemistry. A.

[2]  M. W. Schulz,et al.  Explorations on the potential surfaces of AHn-benzene complexes , 1990 .

[3]  Fernando Pirani,et al.  Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations , 1991 .

[4]  H. S. Gutowsky,et al.  Low-J rotational spectra, internal rotation, and structures of several benzene-water dimers , 1993 .

[5]  Fernando Pirani,et al.  Atom-bond pairwise additive representation for halide-benzene potential energy surfaces: an ab initio validation study. , 2009, The journal of physical chemistry. A.

[6]  Marvin Waldman,et al.  Ab Initio Atomic Polarizability Tensors for Organic Molecules , 2002 .

[7]  M. Albertí,et al.  Dynamics of Rb+–benzene and Rb+–benzene–Arn (n ⩽ 3) clusters , 2006 .

[8]  Antonio Laganà,et al.  Properties of an atom bond additive representation of the interaction for benzene argon clusters , 2004 .

[9]  M. Albertí,et al.  Tetrahedral ordering in water: Raman profiles and their temperature dependence. , 2009, The journal of physical chemistry. A.

[10]  M. Albertí,et al.  Steric and energetic properties of the Cl-–C6H6–Arn heterocluster , 2006 .

[11]  M. Albertí,et al.  A generalized formulation of ion-π electron interactions: role of the nonelectrostatic component and probe of the potential parameter transferability. , 2010, The journal of physical chemistry. A.

[12]  V. Aquilanti,et al.  Orientation of benzene in supersonic expansions, probed by IR-laser absorption and by molecular beam scattering. , 2001, Physical review letters.

[13]  Elias Rudberg,et al.  Basis set dependence of solute–solvent interaction energy of benzene in water: A HF/DFT study , 2008, J. Comput. Chem..

[14]  Fernando Pirani,et al.  Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach , 2001 .

[15]  Anders Wallqvist,et al.  Intermolecular potentials for the water-benzene and the benzene-benzene systems calculated in an ab initio SCFCI approximation , 1983 .

[16]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[17]  M. Albertí,et al.  Cation-pi-anion interaction in alkali ion-benzene-halogen ion clusters. , 2009, The journal of physical chemistry. A.

[18]  Margarita Albertí Rare gas-benzene-rare gas interactions: structural properties and dynamic behavior. , 2010, The journal of physical chemistry. A.

[19]  Mihaly Mezei,et al.  Aqueous hydration of benzene , 1984 .

[20]  Á. Valdés,et al.  A theoretical study of He2ICl van der Waals cluster. , 2006, The Journal of chemical physics.

[21]  Fernando Pirani,et al.  Atom–bond pairwise additive representation for intermolecular potential energy surfaces , 2004 .

[22]  David Feller,et al.  Strength of the Benzene−Water Hydrogen Bond , 1999 .

[23]  Antonio Laganà,et al.  A molecular dynamics study for the isomerization of Ar solvated (benzene)2–K+ heteroclusters , 2006 .

[24]  Fernando Pirani,et al.  On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres , 2007 .

[25]  A. Gavezzotti,et al.  Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. 2. An Improved Polarization Model and the Evaluation of Dispersion and Repulsion Energies , 2003 .

[26]  M. Albertí,et al.  Guided ion beams study of ion–molecule reactions at low collision energies: The Li+–acetone adduct formation in the 0.10–1.00 eV center of mass energy range , 2007 .

[27]  Kazumasa Honda,et al.  Origin of the Attraction and Directionality of the NH/π Interaction: Comparison with OH/π and CH/π Interactions , 2000 .

[28]  J. Herbert,et al.  Stabilization and rovibronic spectra of the T-shaped and linear ground-state conformers of a weakly bound rare-gas-homonuclear dihalogen complex: He...Br2. , 2005, The Journal of chemical physics.

[29]  Fernando Pirani,et al.  Static and dynamic properties of anionic intermolecular aggregates: the I−–benzene–Arn case , 2009 .

[30]  Per Linse,et al.  Monte Carlo studies of a dilute aqueous solution of benzene , 1984 .

[31]  Donald G Truhlar,et al.  How well can density functional methods describe hydrogen bonds to pi acceptors? , 2005, The journal of physical chemistry. B.

[32]  F Pirani,et al.  From ar clustering dynamics to Ar solvation for Na+-benzene. , 2007, The journal of physical chemistry. A.

[33]  Richard J. Saykally,et al.  Terahertz Laser Vibration−Rotation Tunneling Spectroscopy and Dipole Moment of a Cage Form of the Water Hexamer , 1997 .

[34]  Fernando Pirani,et al.  Velocity dependence of collisional alignment of oxygen molecules in gaseous expansions , 1994, Nature.

[35]  J. Gallivan,et al.  Can lone pairs bind to a pi system? The water...hexafluorobenzene interaction. , 1999, Organic letters.

[36]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[37]  D. Langreth,et al.  A density functional theory study of the benzene-water complex. , 2008, The journal of physical chemistry. A.

[38]  A Aguilar,et al.  Size-specific interaction of alkali metal ions in the solvation of M+-benzene clusters by Ar atoms. , 2007, The journal of physical chemistry. A.

[39]  Enge Wang,et al.  The water-benzene interaction: insight from electronic structure theories. , 2009, The Journal of chemical physics.

[40]  M. Albertí,et al.  On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions , 2009 .

[41]  M. Albertí,et al.  A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H2O aggregates. , 2011, Physical chemistry chemical physics : PCCP.

[42]  Joshua P. Darr,et al.  Combined experimental/theoretical investigation of the He+ICl interactions. I. Rovibronic spectrum of He...ICl complexes in the ICl B-X, 3-0 region. , 2004, The Journal of chemical physics.

[43]  G. Galli,et al.  First principles and classical molecular dynamics simulations of solvated benzene. , 2008, The Journal of chemical physics.

[44]  R. Prosmiti,et al.  He79Br2 B, v= 8 ← X, v = 0 excitation spectrum: Ab initio prediction and spectroscopic manifestation of a linear isomer , 2002 .

[45]  Antonio Laganà,et al.  A study to improve the van der Waals component of the interaction in water clusters , 2008 .

[46]  Timothy S. Zwier,et al.  Multiphoton ionization studies of clusters of immiscible liquids. I. C6H6–(H2O)n, n=1,2 , 1992 .

[47]  Jin Yong Lee,et al.  Quantum mechanical probabilistic structure of the benzene-water complex , 1997 .

[48]  Pavel Hobza,et al.  On the convergence of the (ΔECCSD(T)−ΔEMP2) term for complexes with multiple H-bonds , 2002 .

[49]  Mark S Gordon,et al.  Water-benzene interactions: an effective fragment potential and correlated quantum chemistry study. , 2009, The journal of physical chemistry. A.

[50]  Cecilia Coletti,et al.  High level theoretical study of benzene-halide adducts: the importance of C-H-anion hydrogen bonding. , 2009, The journal of physical chemistry. A.

[51]  Antonio Laganà,et al.  On the development of an effective model potential to describe water interaction in neutral and ionic clusters , 2009 .

[52]  Fernando Pirani,et al.  Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[53]  K. Jordan,et al.  Theoretical Characterization of the Structures and Vibrational Spectra of Benzene−(H2O)n (n = 1−3) Clusters , 1996 .

[54]  M. Albertí,et al.  A 3D-analysis of the Cl−–benzene dimer solvation by Ar atoms , 2011 .

[55]  Fernando Pirani,et al.  Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2−O2 Dimer , 1999 .